
D e r i v a t i v e s o f R e g u l a r E x p r e s s i o n s

JANUSZ A. BRZOZOWSKI

Princeton University, Princelon, New Jerseyt

Abstract. Kleene's regular expressions, which can be used for describing sequential
circuits, were defined using three operators (union, concatenation and iterate) on sets of
sequences. Word descriptions of problems can be more easily put in the regular expression
language if the language is enriched by the inclusion of other logical operations. However,
il~ the problem of converting the regular expression description to a state diagram, the exist-
ing methods either cannot handle expressions with additional operators, or are made quite
complicated by the presence of such operators. In this paper the notion of a derivative of a
regular expression is introduced atld the properties of derivatives are discussed. This leads,
in a very natural way, to the construction of a state diagram from a regular expression
containing any number of logical operators.

1. Introduction

In the design of sequential circuits, the first step consists of obtaining an
unambiguous description of the circuit behavior. For a certain class of problems,
the language of regular expressions [1-10] greatly simplifies this first step of
synthesis. In general, the richer the language, the easier it will be to write the
problem specification. In this paper we use regular expressions which can have
any number of logical connectives, and describe methods for obtaining state
diagrams from such regular expressions.

We are concerned with the usual model of a finite automaton M [4, 7, 10, 11,
12]. The n binary inputs x~, x2, • • • , x~ of M are represented by a single 2 '~-
valued input x, taking the values from A~ = {0, 1, . . . ,]¢ - 11, where/c = 2 ~.
The internal states of M are ql, q:, • • • , q~ and one of these, qx, is the starting
state of M. The transitions between states are specified by a flow table or by a
state diagram. In the Moore model [11] the outputs are associated with internal
states and are denoted by Z~. ; iu the i~[ealy model [12] the outputs z~ are asso-
ciated with transitions. The results are presented in terms of a Moore machine;
however, the results also apply to Mealy machines with slight modifications
which are pointed out where necessary.

2. Regular Expressions

We define the following operations on sets of sequences: If P and Q are two
sets of sequences of symbols from Ak we have:

This research was supported in part by Bell Telephone Laboratories, Murray Hill, N. J.
The majority of the results presented can also be found in Teeh. Rep. 15, Princeton Uni-
versity, Dept. of Elec. Eng., Digital Systems Lab., Princeton, N. J., March, 1962.

Present address: Department of Electrical Engineering, University of Ottawa, Ottawa
2, Canada.

481

Journal of the Association for Computing Machinery, Vol 11, No. 4 (October, 1964), pp. 481-494

482 J A N U S Z A. B R Z O Z O W S K I

Product o~" Concatenation. (P.Q) = {s i s = pq; p ~ P, q ~ Q}. (The dot
is omitted for convenience. Also, since the operation is associative we omit
parentheses.)

Iterate or Star Operation. P* = U~.0 P~, where p2 = pp , ete., and p0 = X,
the set consisting of the sequence of zero length, which has the property RX =
XR -- R.

Boolean function. We shall denote any Booleail function of P and Q by f(P,
Q). The empty set is denoted by 4 and the universaZ set by I. Thus we have the
complement P' (with respect to I) of P, the intersection P & Q, the sum or union
P + Q, the modulo-two sum (exclusive o:a) P ® Q, etc. Of course, all the laws
of Boolean algebra apply. The operators product, star and f are called reg~llar
operators. For economy of notation, we use the same symbol for a ~sequenee s
as for the set of sequences consisting of only that sequence s.

De[inition 2.1. A regular expression is defined reeursively as follows:
1. The symbols 0, I, •. • , tc - 1, X and 0 are regular expressions.
2. If P and Q are regular expressions, then so are (PQ), P , and f (P , Q),

where f is any Boolean function of P arid Q.
3. Nothing else is a regular expression unless its being so follows from a

finite number of applieatioas of Rules 1 and 2.
The definition is a modification of the definition given by MeNaughton and
Yamada [:31, but is more suitable for our purposes.

Tile introduction of arbitrary Boolean functions enriches the language of
regular expressions. For example, suppose we desire to represent the set of all
sequences having three eonseeutives l 's bu~ not those ending in 01 or consisting
of l 's only. The desired expression is easily seen to be

R = (l l l l Z) & (I O l + l l ,) ' .

3. Derivatives of Regular Expressions

We define another operation on a set R of sequences, yielding a new set of se-
quences called a derivative of R.

Definition 3.1. Given a set R of sequences and a finite sequence s, the deriva-
tive of R with respect to s is denoted by D~R and is D~R = {t I st 5: RI.

The notion of derivative of a set (under different names) was introduced pre-
viously [10, 14, 15], but was not applied ~o regular expressions. We now present
an Mgorithm for finding derivatives of regular expressions.

We shall need to know when a regular expression contains)t. For this purpose
we make the following definition.

Definition 3.2. Given any set R of sequences we define ~(R) to be

{;i£'X ~ R,
8(R) = ifX ~ R.

I t i sc lear that ~(a) = 4 for any a ~ Ax., ~(X) = X, and ~(¢) -- 0. Further-
more 8 (P .) = k (by definition of P .) , and 8(PQ) = 8(p) & ~(Q).

DERIVATIVES OF REGULAR EXPRESSIONS 483

If R = f (P , Q) it is also easy to determine 6(R). For example,

~(P + Q) = ~(P) + ~(Q), (3.~)

b (P & Q) = ~(P) & ~(Q), (3.2)

~X if ~(P) = ¢, (3.3)
~(P') = ~¢ if ~(P) X.

The ~-function of any other Boolean expression can be obtained using rules
(3.1)-(3.3), since the connectives -t- and ' form a complete set of connectives.

THEORm~ 3.1. I f R is a regular expression, the derivative of R with respect to a
sequence a of unit length (a ~ Ak.) 'is found recurs'ively as follows:

D~a = X, (3.4)

D~b = ¢, for b = X or b = 4~ or b ~ Al, and b ¢ a, (3.5)

D ~ (P ,) = (D ~ P) P , , (3.6)

D~(PQ) = (D~P)Q + ~(P)D~Q, (3.7)

D , (f (P , Q)) = f (D~P, D~Q). (3.8)

The proof is given in Appendix I.
THEOREM 3.2. The derivative of a regular expression R with respect to a finite

sequence of input symbols s = ala~. . • • a~ 'is jbund recurs@ely as .]bllows:

Dala.,.R = Da2(DalR),

Dala~a3R = Da.a(Dala~R) ,

D~R = Dala,~ . . . a~R = Da,,(Dala,,, . . . a~._lR),

For completeness, i f s = X, then DxR = R.
The proof follows from Definition 3.1.

4. Properties of Derivatives

I t will be shown that the use of derivatives of a regular expression R leads to
the constructioa of a state diagram of a sequential circuit characterized by R,
in a very natural way. First, however, let us investigate some of the properties

of derivatives.
THEORm~ 4.1. The derivative D~R of any regulm" expression R with respect to any

sequence s is a regular expression.
PI~ooF. I t is clear from Theorem 3.2 that DxR is regular and that D~R is

regular (for s of length greater than 1) if D , R is regular (where a is a sequence of
length 1). The construction of Theorem 3.1 shows that D , R is regular, since
only a finite mnnber of regular operations is required to find tile derivative.

THEOREM 4.2. A sequence s is contained in a regular expression R i f and only

~f X is contained in D,R.

484 JANUSZ A. BRZOZOWSKI

PROOF. If X C D,R, then sX = s C R from Definition 3.1. Conversely,
if s ff R, then sX ~ R and X C D~[¢, again from Definition 3.1.

Theorem 4.2 reduces the problem of testing whether a sequence s is contait~ed
in a regular expression R to the problem of testing whether X is contained in
D,R. The latter problem is solved through the use of ~(DsR).

Two regular expressions which are equal (but not necessarily iden~.ical in
form) will be said to be of the same type.

~IMEORm~ 4.3. (a) Every regular expression R has a finite number d~e o~' types
of derivatives. (b) At least one derivative of each type must be found among the
derivatives with respect to sequences of lewth 'not exceeding d~ - 1.

PaooF. The proof of Part (a) of the theorem is given in Appeadix H. Part
(b) of Theorem 4.3 indicates a method of finding all the d~ different types of
derivatives, which will be called the characteristic derivatives of R. The sequences
of symbols from Ak can be arranged in order of increasing length; for example,
for A~ = {0, 1}, we have X, 0, 1, 00, 01, 10, 11,000,

The derivatives are now found in the above order, i.e. DxR, DoR, DtR,
If for sequences s of length L(s) = r no new types of derivatives are found, the
process terminates. For, if no new derivatives are found for L(s) = r, then
every D,R is equal to (of the same type as) another derivative DtR, where
L(t) < r. Consider D,~R = D~(D,R) = D=(DtR) = Dt~R, where a C A~ and
L(ta) < @+1). Thus every derivative with respect to a sequence sa of
length r + l will be equal to some derivative with respect to a sequence ta of
length L(ta) < @+1). Hence, if no new types of derivatives are found for
L(s) = r, then no new types will be found for L(s) = r + l , etc. Therefore
at least one new type of derivative must be found for each L(s) or, otherwise,
the process terminates.

In the above discussion it is assumed that it is possible to decide when two
derivatives are of the same type. This is not always an easy problem but it can
be resolved, as is shown in Section 5.

THEOREM 4.4. Every regular expression R can be written in the form

R = ~(R) A- ~ aD~R, (4.1)
a~Ak

where the terms in the sum are disjoint.
PROOF. First, R may or may not contain X; this is taken care of by 6(R).

If R contains a sequence s, then that, sequenee must begin with a letter a ~ Ak
of the input alphabet. In view of the definition of derivative, the set aD~R is
exactly the set of sequences of R beginning with a. The terms of the sum are ob-
viously disjoint, for the sequences in one term begin with a letter of A~ different
from those in another term.

I t follows from Theorem 4.4 that every regular expression can be represented
by an infinite sum R = ~~,~r sD~R. The number of types of derivatives is of
course finite and so the series is redundant (e.g. the set of sequences beginning
with ab is contained in the set of sequenves beginning with a). [['he expansion
(4.1) is much more useful, as will be shown below.

DERIVATIVES OF :REGULAR EXPR]~SSIONS 4S5

THEORE~,I 4.5. The relationship between the dR characteristic derivatives oJ ":~ R
can be represented by a unique set of dR equations of the form ~ !i

D~R = a(DJ~) + ~ aD~,oR, : : i
~eAk

where D~R is a characteristic derivative and D~oR is a characteristic derivative equal
to D~,R. Such equations will be called the characteristic equations of R

The theorem follows directly from Theorems 4.3 and 4.4. ~
THEOREM 4.6. An equation of the form X = A X + B, where 6(A) = 4), has

the solution X = A • B, which is unique (up to equality of regular expressions).
The theorem is a modification of a theorem of Arden [8], wire has shown that

X = X A ~ B, ~(A) = ¢p, has the solution X = B A , . The proof of Theorem 4.6
parallels that of Arden's theorem and will not be given here.

THEOREM 4.7. The set of characteristic equations of I~ can be solved for R uniquely:
(up to equality).

PROOF. The proof follows from Theorem 4.6. T h e last characteristic deriv~!
tive can be found in terms of the previous derivatives. Note that the coefficient
A in the equation for any derivative is either ~ or i t is one or more symbols of
the input alphabet. Thus ~(A) = ¢ in all cases and Theorem 4.6 applies. Next,'
the solution for the last derivative can be substi tuted in the first (dR - 1) equa-
tions, reducing the number of equations by 1. T h e process is repeated until the
set of equations is solved for DxR = R.

Thus the regular expression can be always reconstructed from the characteris-
tic equations (although it :may be in a different form, depending on the order of
elimination of derivatives from the equation).

5. State Diagram Construction

Definition 5.1. A sequence s is accepted by an automaton M with starting state
q~ iff when s is applied to M iu qx the output is 1 a t the end of s. Otherwise, s is
rejected by M. A sequence s is accepted by a state q~ of M. iff when M is started
in q~ the output is 1 at the end of s.

Two states qj and qk of M are indistinguishable [11] iff every sequence s applied
to M started in qs produces the same output sequence as tha t produced by apply-
ing s to M started in qk •

THEOREM 5.1 [7]. Two states q~ and qk of M are indistinguishable iff Rj and
Rk denoting the sets of sequences accepted by qj and qk are equal.

PROOF. (The theorem has been proved by Lee [7] in a more general form.)
If qi and qk are indistinguishable then M started in qj and M started in qk pro-
duce identical output sequences for any input sequence. In particular, the sets
of sequences ending in Z = 1 must be identical, i.e. Ri = R , . Now suppose
that Ri = R, but q~ and qk are distinguishable. Then there must exist an s
producing different output sequences. Consider the first position in which the
output sequences differ; clearly, the initial port ion of s up to and including that
position is accepted in one ease and rejected in the other, contradicting R~. = R~.

4:~6 JANUSZ A. BRZOZOWSK~:

I t is clear that, if a sequence s takes M (which accepts R) from qx to qj , then
the regular expression Rj is simply the derivative of R with respect to s. If we
take the first s that takes M from qx to q~., then with each state we can associate
a unique derivative with respect to that first s. Theorem 5.1 can now be restated
as follows.

THEOREM 5.1 (a). Two slates qi and q~ of an automaton ill characterized by the
regular expression R are i~listinguishable iff their derivatives are equal, i.e. D~jR =
D~kR , where sj and sk are any two sequences taking M fl'om state qx to q~ a~ t qk
respectively.

Thus by the arguments presented in this and the preceding sections we have
established a very close relationship between derivatives of a regular expression
and the states of the corresponding finite automaton. These results are sum-
marized as follows:

1. To obtain a regular expression from a state diagram or a flow table, write
the set of characteristic equations and solve for R. There is one equation for
each state. I f the transition under input a takes the graph from q~ to qk then the
equation for Rj contains the term aRk ; and k is a te rm of R~. if and only if the
output for qj is Z = 1.

There are other methods [3, 5, 8] of obtaining the regular expressions, but this
otto is most closely related to the derivative approach.

2. To obtain the minimal state diagram from a regular expression, find the
cimracterisfic derivatives and associate one internal s tate with each characteris-
tic derivative. The output associated with a state is Z = 1 i f f the corresponding
characteristic derivative contains X.

This procedure is illustrated in the following example.
L e t R = (0 + 1) . l . Then

Dx = R; introduce qx with Z = 0, for ~(R) = 4),
: Do = R; return to qx under input 0,

Di = R + ~; introduce q~, with output Z = 1 (for 6(D~) = ~), and a
transition from qx to qL under input x = 1. Do0, D0~ need not be considered, for
Do does not correspond to a new characteristic derivative, i.e. 0 returns the
state graph to qx • Continuing, we find

Da0 = R; go from q~ to qx under x = 0,
DH = R + k; returrl from q~ to q~ under x = 1.

This completes the process. The resulting state diagram is shown in Figure 1 (a) .

O I

0

(0) (b)

FIG. 1. S ta te graphs for R = (0 + 1)*1 (a) Moore model (b) Mealy mode, l

With a very minor modification in the method, a Mealy state diagram can be
constructed from any regular expression. The process in this case is identical
except (,hat when two derivatives are compared the presence of X in ~ derivative

D E R I V A T I V E S O F R E G U L A R E X P R E S S I O N S 487

is ignored. In other words, if D~,R = A, A ~ b X and D~R = A + X , then
D,,,R and D~R correspond to the same state. This is a consequence of the defini-
tion of a derivative: I f D~R D X, this tells us that s is contained in R, i.e. ac-
cepted by the automaton corresponding to R. In the Mealy model this means
that the transition caused by the last symbol of the sequence s has been accom-
panied by the output z = 1. However (if the state reached by the application
of s is q,~), then the presence of X in D~R tells us nothing about the future se-
quences accepted by the state q~ and hence should be ignored. Thus the Mealy
diagram can have a fewer number of states, in general.

The construction of a Mealy diagram can be illustrated by the same example.
For the expression R = (0 + 1),1 we have

Dx = R; introduce qx,
Do = R; return to qx with z = 0,
D, = R + X; return to qx with z = 1.

The eonstruegio~t terminates here, since no new states are found for sequences
of length 1. The diagram is shown in Figure l (b) and consists of one state,
whereas the corresponding Moore model has two states.

The characteristic equations can be obtained from a Mealy mode[in a way
very similar to that for the Moore modeh If the transition caused by input a
from state qj to state q~ has an output Z = 1 then the equation for Rj contains

o/o o/o

Fie,. 2. State graph to be analyzed

the term a(Rk + X) = aRj~ + a; if Z = 0 the term is just ark. For example
for the state diagram of Figure 2 we obtain the equations

Rx = 0Rx-t- 1R1 and R1 = 0R~ + l (R x + X).

Solving these equations we obtain

R, = 0*lRx + 0,1; Rx = (0 + 10*I)Rx + 10,1.

Hence Rx = (0 + 10,1) ,10,1.
In the above discussion we have assumed that, i t is always possible to recognize

the equality of two regular expressions. If this is the ease, then the state diagram
constructed by assoeiating one internal state with each type of derivative is al-
ways minimah However, it is often quite difficult to determine whether two
regular expressions are equal. We now show that this difficulty can be overcome,
and a state graph can always be constructed, but not necessarily wi~h the mini-
mum number of states. I t should be pointed out tha t the other existing methods
[3, 6] have the same difficulties and, moreover, are limited to regular expressions
with (+) , (.) and (,) only.

Definition 5.2. Two regular expressions are similar if one can be transformed

488 J A N U S Z A. B R Z O Z O W S K I

to the other by using only the identities:

R + R = R ,

P -~ Q = O + P,

(P + Q) + [e = P + (Q + R).

Two regular expressions are dissimilar iff they are not similar.
I t is clear that similarity implies equality, but equality in general does not

imply sinfilarity. Similarity can be easily recognized and is much weaker than
equality.

T~EOt~EM 5.2. Every regular expression has only a finite number of dissimilar
derivatives.

PROOF. The proof is given in Appendix II. As a consequence of this result, a
,state diagram can be conslrucled even if only similarity among the derivatives is
recognized. However, such a method has a serious disadvantage since, in general,
the diagram so constructed will be far from minimal This arises because of the
frequent appearance of X and ~b in the derivatives. For example, consider R =
(0 + 1},(01) and the derivative D~R.

D,R = (Dr(((} q- 1) .)) (01) q- D,(01)

= ((Dr(0 q- 1)) (0 q- 1) ,) (01) -+- (D,0) l .

= ((D,0 -k D d) (0 q- 1) .) (01) q- (D~0)I

= ((4 q- X)(0 4- 1) ,) (01) q- 41.

In this case, using only similarity, we are forced to conclude that R and D~R are
dissimilar. However, the expression for D,R can be easily simplified by the iden-
tities

R q- 4 = ~b ~- R = R, R~b = 4)R = 4, RX = XR = R. (5.1, 5.2, 5.3)

The expression for D~R then becomes

D,R = (X(0 4- 1) ,) (01) q- (b = (0 q-- 1) . (01) = R.

The identities (5.1)-(5.3) are thus very useful and will be incorporated in the
method.

We conclude this section with a more complicated example. Let it be desired
to have an output if the input sequence contains two consecutive O's but does
not end it, 0l. The required regular expression is R = ([OOI) & (I01) ' = P &
Q', where I = (0 q- 1) . , P = IOOI, Q = I01. The construction of deriva-
tives proceeds as follows:

D× = R = P & Q'; introduce qx,
Do = (P + 0I) & (Q q- l) ' ; introduce q0,
Dt = P & Q'; return to qx,
D00 = (P + 0[+ I) & (Q + 1)', introduce go0.

Here we note that I + X = I and I & X = X. Hence we may write Do0 in a

DERIVATIVES OF REGULAR EXPRESSIONS 489

i

0

0 0 Z:I

FIG. 3. State diagram for the example

simpler form:
Doo = (Q + 1)',
Do, = P & (Q + 3 0 ' ;
D ~ = (Q ~- 1)';
D ~ = (Q ~- ~)';
Do~o = (P -} -0 I) & (q + 1)';
Dm = P & Q';
Doo~o = (Q + 1)';
Dooii = Q';
Doono : (Q + 1)';

introduce qo~,
return to qoo,
introduce qoo~,
return to qo,
return to qx,
return to qoo,
introduce qoo,,
return to qoo,
retum to q~ou.
characteristic derivatives are D , , D~,

Doom = Q';
This concludes the construction. The

Doo, Do1, Dool and Dora. Therefore the state diagram has 6 states shown in
Figure 3. One has to determine ~(D~) to find the output associated with q~.
In this case only Doo and Dora contain ;~; hence the output is Z = 1 only for qoo
and qoo~l •

Upon examining the state diagram it is seen that states qx and qo~ are indis-
tinguishable and that the reduced state diagram contains only 5 states. We
have failed to discover this because we have failed to recognize the equivalence
Do~- P & (Q + ~) ' = P &Q' &k ' = P & q ' = D~.

6. Regular Expressions .for Multiple-Output Circwits

The behavior of a multiple-output sequential circuit can be represented by
specifying one regular expression for each output. Thus, for each output Z~ we
have a corresponding regular expression R~ : any sequence of R~ results in Zi =
1; the sequences not contained in R~ result in Z~ = 0. The expression R~ carries

490 JANUSZ A. BRZOZOWSK[

no information about any of the other outputs; consequently, each Ri can be
specified independently.

In this manner, we can describe the action of a sequential circuit with r out-
puts by an ordered r-tuple of regular expressions. For convenience, we refer to
such r-tuples as regular vectors, R = (R1, R2, " " , Rr), where tile R~ are the
components of the vector R. The corresponding outputs at any time can be
denoted by Z = (Z1, Z2, . . . ,Z~), where the Z~. are binary variables.

Definition 6.1. Tile derivative of a vector I1 of regular expressions, with respect
to a sequence s, is a vector of regular expressions denoted by D~R and defined by
D~R = (D,R1 , D~R2 , . . • , D,R~).

Definition 6.2. Two regular vectors P and Q, with r components each, are
equal, P = Q, iff their components are equal, i.e. P~ = Q4 for all i.

Since every regular expression has only a finite number of types of derivatives,
it follows that every regular vector has a finite number of types of derivatives.
Consequently, given a regular vector R, we can construct a state diagram (Moore
model), by associating one derivative per state, beginning with DxR = II. The
derivatives arc constructed for sequences in increasing order, as in the single
output case. An output Zi is 1 iff X C D.~R~.

Note that, for a multiple-output circuit, the behavior could be described by a
set of r state diagrams, one for each regular expression. We are interested in
constructing a single state diagram which will produce the correct r-tuple of
outputs. The result of the state diagram construction described above can be
summarized as follows.

THEOnEM 6.1. Given a regular vector R , i f a state diagram is constructed by
associating one type of derivative of R per state, that state diagram represents the
desired behavior and is minimal.

PROOF. Given a regular vector R = (Rt , R2, . . . , Rr), a state diagram is
desired with the property that Zi = 1, as a result of applying a sequence s iff
s C R~. By construction, the proposed state diagram will go from the starting
state qx to state q, , associated with D,R or with the equivalent previous deriva-
tire. Also by construction, the output Z~- (associated with state q~) will be 1 iff
X E D,R.~, i.e. s C R~-. Thus it is clear that every sequence will produce the de-
sired output vector. To prove the minimality of the state diagram, we note that
there must be a distinct state for each distinct derivative. If two derivatives

I / l l
0/(30

0/00

0/00

FIG. 4. State diagram for l/ = (R1, R2)

DERIVATIVES OF REGULAR EXPRESSIONS 491

D.~R and D~R are not equal, they must differ in at least one component, say
])~R i ~])~R~. Hence D~R and DtR cannot correspond to the same state, for
the output Zj would be incorrect for some sequence which is in D,R5 but not
in DtRj or vice versa. Therefore, since it, is necessary and stffticient to have one
distinct state pet' distinct derivative, the state diagram is minimal.

The construction of a Mealy state diagram is identical except that two deriva-
tives (vectors) differing by a vector with eompmmnts ¢ or X only, can be asso-
ciated with a single state.

Example. I4 = (R~, R2) = ((0 + 10.1) .10.1 , (0 + 1).01).
We now construct the Mealy state diagram for tlfis two-output circuit.

Dx = (R1, R~);
D0 = (R1, R2 + 1);
D1 = (0*IR1 + 0.1, R2);
Do0 = (RI, R2 + 1);
D01 = (0*IR~ + 0.1, R2 + X);
D10 = (0.1R1 + 0.1, R2 + 1);
Dll = (R1 + X, R2);
D100 = (0.1R~ + 0 . l , R2 + 1);
D1~,1 = (R1 + X, R2 + X);

The state diagram is shown in Figure 4.

introduce qx,
q0, z = (0, 0),
q~, z = (0 ,0) ,
to qo, z -- (0, 0),
t o q l , z = (0, I),
q~0, z = (0, 0),
to qx, z = (1, 0),
to q~o, z = (0, 0),
t o q x , z = (1 ,1) .

7. Conclusion

Regular expressions can be obtained more easily from word description of
problems if one is allowed to use any logical connective in the formation of the
expression. We have introduced here the notion of a derivative of a regular ex-
pression as a powerful aid in analyzing the properties of regular expressions wi¢,h
arbitrary logical connectives. The derivative approach leads naturally to state
diagrams of sequential circuits and has been extended to cover the multiple
output case.

Aclcnowledgment. The author wishes to thank Professor E. J. McCluskey,
J. F. Poage, E. B. Eichelberger and S. O. Chagnon of Princeton University for
their comments and suggestions.

A P P E N D I X I. PROOF OF T H E O R E M 3.1.

The proof follows for relations (3.4)-(3.8), for finding the derivative of R
with respect to a sequence a C A~ of unit length.

By definition 3.1, D~R = { t la t C RI. Then relations (3.4) and (3.5) are
obvious. Thus the theorem holds for regular expressions involving no regular
operators.

Let us consider now (3.8). I t is sufficient to prove this relation for f (P , Q) =
P + Q and for f (P , Q) = P', for this is a complete set of Boolean connectives.
Now

40 2 JANUSZ A. BRZOZOWSKI

D~(PQ) =

But D~P = D~(Po + ~)
which is rule (3.7).

Finally, we have

D , (P + Q) = { t la t E (P + Q)}

= { u l a u ~ P} + {v lay C Q}

= D~P + D,Q.

I~ is clear that this rule can be extended to any number of regular expressions,
i.e. that D,(R1 + R~ + .. •) = D~R1 + D~R2 + • • • even when the number of
Ri is countably infinite. Next, note that aDaR + aD,(R') = aI. Taking the
derivative with respect to a of both sides, we have D,R + D~(R') = [. Also
(D,R) & (D,(R')) = 4, and we have D,(R') = (D,R) ' . Thus rule (3.8) holds
for union and complementation, and consequently for any Boolean function.

Next consider D,(PQ). Let P = ~(P) q- P0, where ~(Po) = 4,. Then

{s las E (~(P) + Po)Q}

{u[au E 3(P)Q} + {vl av ~ PoQ}

3(P)DaQ q- {vlv21 avl E Po, v2 E Q}

~(P)D~Q + {v~ [av~ E Po}Q

~(P)D~Q + (D,Po)Q.

= D,Po; hence D,(PQ) = 3(P)D,Q + (D~P)Q,

But

D , P , = D,,(h + P + P P + P P P + . . .)

= D~X + D~P + D,P 2 + . . . + D,,P '~ +

DaP ~ = ~ ((DaP)P "-1 + ~(P)DaP ~-1)
n ~ l n=l

= ~ . (D~P)P ~-I,

since ~(P)Da n-1 is either 4~ or it is D.P ~-1, which is already included. Thus we
have

D~P* = ~ (D~P)P~-I = (OAR) ~ pn-l = (D~P)P* ,
n=l n=l

which is rule (3.6). This concludes the proof of Theorem 3.1.

A P P E N D IX II. PROOFS OF THEOREMS 4.3(a) AND 5.2

Theorem 4.3 is proved by induction on a number N of regular operators.
BAsis, N = 0. The theorem is certainly true when R is oneof ¢,), or a C Ak,

for we have

DERIVATIVES OF REGULAR EXPRESSIONS 493

D ~ = ~ f o r a l i s C I,

Dxk = ~ , andD,k = C f o r a l l s C I , s ~ ~.

Dxa = a. D~a = ~. D~a = ~ f o r a l l s ~ I , s ~ , a .

Thus we have d+ = 1, dx = 2 a~d do = 3.

INDVCTION STEP, N ~ 0. Assume that each expression X with N or fewer
operators has a finite number d.r of derivatives. If R is an expression with N + 1
operators, there are three cases.

Case 1. R = f (PQ) . I t is easily verified from tile definitions that D~R =
D~(P 4- Q) = D,P 4- D,Q. Thus d~ < dvdo. If R = P ' then D~R = (D,P) ' .
I~t this case, d~ = dp. Since any Boolean function can be expressed using a finite
number of sums and complements, it follows that the number of derivatives of
R (of the form R = f (P , Q)) is finite.

Case 2. R = PQ. Let s = ala2 . . . a~. Using the definitions of Section 3,
we have D,~R = (D~P)Q 4- ~(P)D~Q. Similarly, for a sequence of length 2,
we have D~,2R = (D~,2P)Q + 6(D~P)D,2 Q + ~(p)D~,2 Q. In general, the
derivative with respect to a sequence of length r will have the form

D,~ R -- (D,, P)Q 4- ~(D~ ~P)D,,Q . . .
(H.1)

4- 6(D~,P)Do~ Q + $(P)D, , Q.

Thus D~R is the sum of (D~P)Q and of at most r derivatives of Q. If there are
de and do types of derivatives of P and Q respectively, there can be at most
dR < de2 a~ types of derivatives of R. (Note that we are finding upper bounds to
show the finiteness of dR, but such bounds do not necessarily have to be
achieved.) Hence the inductive step holds for this case also.

Case 3. R = P . . Again let us consider the formation of the derivative of
P*. We have

D ~ (P .) = (D,~P)P. ,

n . ~ (P *) = (Do,o~P)P, + ~(D~P)D~(P,)

= (D,, , .oP)P. 4- 6(D~,P)(D,~P)P. , etc.

I t can be seen that, in general, D,R will be the sum of terms of the form Dt(P)P*.
If P has dp types of derivatives, then R has at most d , ___ 2 av - 1 types of deriv-
atives. This concludes the inductive step.

To prove Theorem 5.2 we must demonstrate tha t the process of constructing
the derivatives will terminate after a finite number of steps, even if only similar-
ity of regular expression is recognized. This result is actually implicit in the proof
of Theorem 4.3, but we shall explain it now in more detail.

The result is obvious for the basis step. Now suppose the given R is of the
forn~ R ~- f (P , Q), Then from Case 1 above we have D,R = f (D,P, D~Q), for
this result holds for 4- and '. Now, as s takes on all possible values, compare
D~R with all the previously found derivatives. Since D~P and D,Q will appear in

494 JANUSZ A, 7{3RZOZOWSKI

f(D~P, D~Q) only a f ini te n u m b e r of t imes and the s t ructure of f is f ixed, and
fur thermore , P and Q h a v e a finite number of der ivat ives , the p rocess will
clearly t e rmina te .

Proceeding with Case 2 above , if R = PQ we can write D~R iI~ t t l e form of
(H .1) . Here, however we eamto t use the a rgument of Case 1 sine,~', ~,he aunxber
of terms in (I L l) inereases wi th the length of .s. The associat ive law for s u m has
been used in (I I . 1) to r e m o v e parentheses. The commuta t i ve law for sum can
be used to reeogtfize two sl lnls ill. which the terms appear in differe~zt orders.
But i t is the i den t i t y R q- R = R which allows us to terrMnate the process.
Note t h a t the i nequa l i t y d~, < d~2 ~e resuttir~g from (I I .1) does xxot d e p e n d on
the length of s. Thus each new der iva t ive must be simplified us ing /~ @ R = R
and then compared w i t h the previous derivat ives.

Final ly , the same a r g u m e n t is appl icable to R = P , and hence the theorem
holds.

REFERENCES

1. KI, E~:N~ b S .C. Representation of events in nerve nets and finite automat.~, In Auto-
,rnata Studies, Ann, Math. Studies No. 34, Princeton U. Press, 1956, 3-41.

2. Coet, I. M.; EI~(;o% C, C.; aND Wmcwr, J .B . Realization of events by logical nets.
J. ACM 5 (Apr. 1958), 181--196.

3. McNAuGH'rON, I{. aND Ya~ADA, H. Regular expressions a~M state graphs for auto-
mats. IRE Trans. EC-9 (Mar. 1960), 39--47.

4. BRZOZOWSKI, J .A. A survey of regular expressions and their applications. ItgE Trans.
EC-11 (June 1962), 324-385. (Mso Teeh. Rep. 4, Princeton U., Digital Systems Lab.,
Apr. 1961).

5. BltzozowsKl, J. A. ANt~ McCI,usKEY, E. J. Jn. Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. EC-I?~ (Apr. 1963), 67-76. (Also Teeh. I~ep. 5,
Princeton U., Digital Systems Lab., Apr. 196l).

6. O:r% G. H..~ND FEtNSTmN, N . H . Design of sequential m~tehines from their regular
expressions, J. ACM 8 (Oct.. 1961), 585--600.

7. LI~I~, C, Y. Automata and finite automat,'L Bell S.q,stem Tech. J. 89 (Sept. 1960), 1267-
1295.

8. ARDEN, D . N . Delayed logic and finite state machines. In Theory of Compztt.ing Ms.
chine Desiqn, pp. 1-'15. U. of Michigan Press, Ann Arbor. 1960.

9. MVmLL, J. Finite automata and representatAon of events. WADC, Teeh. I lep. 57-624,
1957.

10. R*mN, M. O. aND Seo,r,r, D. Finite automata and their decision problems. IBM J.
Reg. Develop. 3 (Apr. 1959), 114-125.

11. MOORE, E . F . Gedanken experiments on sequential machines. In Aulo~ata Shtdies,
Ann. of Math. Studies No. 34, Princeton U. Press, 1956, 129-.153.

12. M:gM~Y, G .H . A method for synthesizing sequential circuits. Bell System. Tech. J . . ~
(Sept.. 1955), 1045--1079.

13. HU~'FMaN, D. A. The synthesis of sequential switching circuits. J. Fra.nlclin [~zst.
257 (Mar., Apr. 1954), 161-190, 275-303.

14. R*NEV, G .N . SequentiM functions. J. ACM 5 (Apr. 1958), 177.
15. ELGOa', C. C. aND RU'rLEDa~, J. 1). Operations on finite automata. Proe. AIEE Second

Ann. Symp. on Switching Circuit Theory and Logical Design, Detroit, Mich., Oct.
1961.

REeEIWD AP~II,, 1963, REWSEI~ NOW:~BEI~, 1963.

