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Abstract—The Unix shell dgsh provides an expressive way to construct sophisticated and efficient non-linear pipelines. Such pipelines

can use standard Unix tools, as well as third-party and custom-built components. Dgsh allows the specification of pipelines that perform

non-uniform non-linear processing. These form a directed acyclic process graph, which is typically executed by multiple processor

cores, thus increasing the processing task’s throughput. A number of existing Unix tools have been adapted to take advantage of the

new shell’s multiple pipe input/output capabilities. The shell supports visualization of the process graphs, which can also aid debugging.

Dgsh was evaluated through a number of common data processing and domain-specific examples, and was found to offer an

expressive way to specify processing topologies, while also generally increasing processing throughput.

Index Terms—Process-level parallelism, Unix, pipeline, pipes and filters architecture

Ç

1 INTRODUCTION

A pipeline is a set of processes that are linearly con-
nected so that the output of one is delivered as input to

the next one in the series. While the concept’s origin in the
form used today was popularized by the Unix operating
system, pipelines are nowadays supported by many mod-
ern systems. The availability of pipelines has allowed the
development of toolkits that build on them and the emer-
gence of the “pipes and filters” architecture. Although pipe-
lines are extremely powerful, the standard Unix shell’s
restriction of the supported topology to a linear sequence,
limits the structure or performance of many useful applica-
tions that require a more general way to interconnect pro-
cesses. This paper describes the design and implementation
of a shell that addresses this problem by supporting a syn-
tax and an execution environment for creating arbitrary net-
works of communicating processes.

On Unix systems and those systems influenced by them,
the establishment of process pipelines is supported through
the pipe system call, which creates a unidirectional serial
communication channel that two processes can use to send
data from one to the other. The pipe call is in turn utilized to
support the shell’s pipeline syntax, which allows the creation
of a linearly connected set of processes, where each process
receives input from its preceding one and passes its output
to the next one. For example, the following shell command

ls | wc �l

will create two processes: ls, which will list on its standard
output the names of files in the current directory, and wc,
which will count the number of lines appearing in its stan-
dard input. The pipeline symbol | joining the two

processes, will result in the creation of a pipe, and the join-
ing of the standard output of the ls process with the stan-
dard input of the wc process. Thus, the command will
display the number of files in the current directory.

Pipes in the form they are most commonly used today
were added to the Unix operating system in 1972 [1] after
strong advocacy by M. D. McIlroy, who wrote the following
in a 1964 list of four action items [2].

“1. We should have some ways of coupling pro-
grams like garden hose—screw in another segment
when it becomes necessary to massage data in
another way. This is the way of I=O also.”

Initially the pipe system call was implemented, then the
shell’s redirection operators were extended to support the
expression of pipelines. A notation for expressing pipelines
with a unique operator was devised a few months after-
wards. A similar abstraction, called “Communication
Files” [3, pp. 175–197], is reported [1] to have pre-existed in
the Dartmouth Time Sharing Systemwithout the Unix devel-
opers knowing it at the time.

Unix pipelines can be modelled as a restricted form of
Hoare’s communicating sequential processes (CSP) [4], [5].
Under the CSP model, processes communicate by sending or
receiving values through named unbuffered channels. Pipes
differ from the CSP model in that they offer a (typically small)
buffer. In practice, this increases the throughput but also the
latency of jobs employing pipelines, making Unix pipelines
more suitable for batch-oriented processing, and less fitting
for implementing, say, interactive applications.

Pipelines offer many advantages. They provide a natural
syntax for setting up processes to work together without
onerous prearrangements, realizing what was later termed
the pipes and filters architecture [6] [7, pp. 21–22]. Two pro-
cesses linked by a pipe can cooperate simply by handling
data in a compatible format; newline-terminated text streams
are a particularly popular one. Pipelines promote abstraction,
encapsulation, and loose coupling by allowing the design of
programs that do a single thing well, and leave additional
processing to be performed by other specialized programs.
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For example, most of the Unix tools lack formatting and pagi-
nation facilities, because these are supposed to be handled by
other tools, such as pr, fmt, troff, and more. In addition, if a
pipeline’s programs process data on a record by record basis,
without requiring the buffering of all their input into mem-
ory, the pipeline can process an arbitrary (in theory infinite)
amount of data. Finally, pipelines exploit the processing par-
allelism offered by modern multi-core processors, because
the processes that comprise them can often run in parallel.

Unsurprisingly, the pipeline abstraction has been
extremely successful. As an indication of their widespread
use, consider that the 697 shell scripts appearing in the
source code of a modern Unix derivative (FreeBSD version
11.0), contain about 6,400 pairs of pipe-connected processes
with more than 40 percent of the scripts containing at least
one. In addition, the existence of pipelines has spearheaded
the development of widely-used domain-specific program
families and toolkits whose components have been designed
to be combined through pipelines. Examples include the
Unix document preparation tools [8], netpbm, used for image
processing [9], the Generic Mapping Tools (GMT) [10],
NMRPipe [11], used for processing nuclear magnetic reso-
nance data, the Madagascar shared research environment
for computational data analysis in geophysics and related
fields [12], and the LLVM compiler infrastructure [13].

The linear way in which pipelines are expressed in the
popular Unix shells typically restricts pipelines to the
expression of sequences where a single producer is linked
to a single consumer. This is problematic when the output
of an expensive process must be piped for processing by
more than one downstream processes, or when one process
requires input from more than one upstream process.

As an example for multiple downstream producers con-
sider the task of using the curl command to fetch a large
archive from the web, calculating its cryptographic check-
sum for verification with the md5sum command, and
unpacking it into a local file system with the tar file archiver.
This can be accomplished by the following two pipelines,
which however waste network bandwidth and processing
power, by fetching the file twice.

curl http://example.com/archive |md5sum
curl http://example.com/archive | tar xzf �
Alternatively, the file could be temporarily stored as a whole
onto a local file systemwasting storage space and bandwidth.

curl http://example.com/archive >/tmp/filename
md5sum /tmp/filename
tar xzf /tmp/filename

The problem of handling multiple upstream producers is
often evident when using Unix programs that expect input
from more than one file, such as paste which pastes together
records, comm which finds common records among two
files, and join which performs a relational join between two
files. As an example, the following command sequence uses
two temporary files to list the names of files that exist only
in one of the two directory hierarchies given as an argument
to the find command. It works by creating a sorted list of the
file names in each directory by means of the find and sort
commands, and then by using the comm command to list
the records that do not appear in both of its inputs.

find /dir1 �printf ’%P\n‘ | sort >/tmp/dir1
find /dir2 �printf ’%P\n‘ | sort >/tmp/dir2
comm �3 /tmp/dir1 /tmp/dir2

There are two main workarounds for sidestepping the
restriction of pipelines to a linear sequence, but both leave
something to be desired. The use of temporary files wastes
space and can impact performance. In addition, temporary
files require some delicate programming to guarantee their
deletion when a shell script is interrupted, and necessitate
inventing additional names to describe data that simply
flows between processes. Another workaround works for
programs following a convention under which a command-
line argument of “-” denotes the program’s standard input,
rather than a file name. This makes it possible to replace one
of the temporary files with input from a pipeline. However,
this trick only handles the case of a single input.

Some modern Unix shells, such as bash, offer a feature
named process substitution [14, p. 219]. Through the feature’s
syntax, a program argument of the form <(producer) will
be substituted by an internally-generated pipe endpoint
name that will receive its input from the producer process,
while an argument of the form >(consumer) will be substi-
tuted by a similar name that will feed the input it receives to
consumer. Following this scheme, the file fetching example
could be re-written with the use of the tee program, which
copies its standard input both to its standard output and to
its specified arguments, as follows,

curl http://example.com/archive |
tee >(md5sum) |
tar xzf �
Similarly, the directory comparison example would be writ-
ten as follows.

comm �3 <(find /dir1 ...| sort) <(find /dir2 ...| sort)

The main problem with the process substitution method is
that piping output from a single producer to multiple con-
sumers (one-to-many) cannot be combined with piping out-
put from multiple producers to a single consumer (many-to-
one). In addition, in the latter case, the processing must be
awkwardly specified outside-in from the right to the left,
which is the opposite order from the one in which pipelines
are conventionally expressed.

Modern Unix systems offer named pipes, also known as
FIFOs, which can be used to hand-craft arbitrary process
communication topologies. However, if combined one-to-
many and many-to-one piping are setup by using named
pipes, another problem will occur. Due to the limited buff-
ering offered by typical programs, deadlocks can easily
occur when a process consuming data from many pro-
ducers with more than one input, blocks waiting for input
from one of the processes feeding it. This can cause a second
feeding process to block, waiting to send its output to
another one of the consumer process’s inputs, and, thereby,
blocking the upstream process feeding both processes that
provide data to the consumer one.

The directed acyclic graph (DAG) shell (dgsh) described in
this paper extends the linear pipeline syntax of common
Unix shells with syntax and an underlying implementation
that allows interprocess data flows to follow a DAG topology.
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Specifically, processes form the DAG’s nodes and pipeline con-
nections form the DAG’s edges, with data flowing in the direc-
tion of the graph’s edges. As an example, the file fetching case
would be expressed in a dgsh script presented in Listing 1.
There, the fetched file is fed into the tee command, which
sends one copy of its input tomd5sum and another to tar.

Listing 1. Fetch file once; compute checksum and unpack
in parallel

curl http://example.com/archive j
tee j
{{
md5sum
tar xzf �

}}

Through its syntax, dgsh allows the expressive and effi-
cient specification of complex sophisticated process graphs
consisting of standard Unix tools, as well as third-party and
custom-built components.

Such graphs can be used for processing data sets and
streams, with gains in throughput achieved by eliminating
the use of temporary files and by having processes execut-
ing on multiple processor cores.

In the following sections we will overview the syntax and
semantics of dgsh (Section 2), detail its design and implemen-
tation (Section 3), present its use through representative moti-
vating examples (Section 4), and evaluate its performance and
expressiveness (Section 5). Section 6 outlines related work in
the area. Finally, Section 7 concludes this paper with a short
discussion and an overview of directions for futurework.

2 SYNTAX AND SEMANTICS

Dgsh extends the syntax of the Unix Bourne shell [15] and
the affordances of some key Unit tools. The extensions
involve a) the provision of an inter-process communication
(IPC) mechanism through a syntax that allows the specifica-
tion of pipelines communicating in a directed acyclic pro-
cess graph, and, b) the ability of the specified commands to
receive or produce multiple input/output (I/O) streams.
These changes allow communicating processes to perform
non-uniform non-linear processing.

In abstract terms, a DAG is understood as a recursive com-
position of boxes b with InðbÞ ordered inputs and OutðbÞ
ordered outputs. A box’s number of inputs or outputs may
be designated “flexible”, which can take values ½0;1�.

A composition step (symbolized by |) matches in order
the outputs L of one box b1 to the inputs R of another b2. A
pairwise composition may involve at most one box with
flexible input and one box with flexible output. In this case
flexible inputs or outputs may expand to cover the other
box’s cardinality of outputs or inputs, with the cardinality
of a flexible element on the other side counting as one. The
cardinalities of L and R must be equal, either directly or by
expanding through flexibility.

Boxes can be recursively grouped by bracketing an
ordered set of (asynchronously executing) boxes using a
pair of double curly braces ({{ }}). The inputs and outputs
of the group are those of the grouped boxes, ordered
according to the order of the boxes in the group. At most

one box in a group may have flexible input or output; the
corresponding flexibility is inherited by the group.

Concretely, the syntax of dgsh is formally defined
through the BNF grammar appearing in Fig. 1. A dgsh script
follows the syntax of a bash shell script with the addition of
multipipe blocks. A multipipe block starts with the symbols
“{{” and ends with the symbols “}}”. Data may be piped
into and out of the block through multiple pipes.

A multipipe block can contain elements to execute simple
commands (following the Bourne shell terminology), other
multipipe blocks, or pipelines composed of the previous
two types of elements. Commands not connected with a
pipe execute asynchronously when connected with the cor-
responding connector offered by the shell (&), the semicolon
connector (;), or the newline (\n) character. In this way dgsh
enforces parallel asynchronous processing of the commands
given within a multipipe block.

Listing 2. A dgsh script that identifies spelling errors

tee j
{{
{{
# Obtain text’s words; one at each line
tr �cs A�Za�z nn n j
# Convert capital letters to lower case
tr A�Z a�z j
sort �u
# Ensure dictionary is sorted consistently
sort /usr/share/dict/words

}} j
# Identify words that are not in the dictionary
comm �23
# Format the text’s words into lines
fmt

}} j
# Color words that are not in the dictionary
grep �F �f � �i �color �w �C 2

To provide the reader with a feeling of the syntax, an
example dgsh script is shown in Listing 2. The script finds
misspelled words in its standard input based on a scheme
used by the first draft of the Unix spell program [16], and,
as a modern extension, it also highlights them in the original
text. The script works as follows. First, the tee command
copies its text input to two destinations: the inner multipipe
block and the fmt command which formats the text into neat
lines. Within the inner multipipe block two command
sequences generate two sorted streams of words: one with
all words in the text, and one with all the words in the

Fig. 1. The dgsh syntax.
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system dictionary. The text’s words are generated by first
having tr map all the non-alphabetic characters into new-
lines, second by having another tr instance map uppercase
characters to lowercase, and third by sorting the output into
a list of unique words. The two streams are then passed
from the inner multipipe block to the comm command,
which compares the two sorted sequences and outputs only
those records that appear in the first one (i.e., the misspelled
words). Finally, the grep command receives from the two
input channels of the outer multipipe block a) the mis-
spelled word patterns to match, and b) the stream of origi-
nal text in which to find them and highlight them.

3 DESIGN AND IMPLEMENTATION

Dgsh is made available an open source software system
comprising

� amodified implementation of the bash [14] Unix shell,
� a set of Unix tools adapted to utilize the availability

of multiple I/O channels,
� a wrapper process and a suite of Unix tools wrapped

with it to become compatible with dgsh,
� a few newly-developed tools to aid the construction

of DAG processing networks,
� a library implementing the dgsh interprocess com-

munication protocol, which involves a negotiation
procedure for connecting the communication chan-
nels of the DAG’s processes, and

� a communication channel concentrator, which is
used to connect the DAG’s processes into a ring net-
work topology during the negotiation phase.

In brief, these elements work together as follows. Dgsh
scripts invoke the modified bash shell with the name dgsh (or
pass to bash the ��dgsh command-line flag) in order to use
the dgsh constructs detailed in Section 2. The scripts can use
some Unix tools, such as tee, cat, or join, which we adapted to
take advantage of the dgsh’s support formultiple I/O channels.
These tools can read input (cat, join) from multiple upstream
process, or produce output (tee) for multiple downstream
ones. Dgsh scripts can also use any other Unix tool, which is
automatically or manually wrapped in order to become com-
patiblewith the dgsh interprocess communication protocol.

When the dgsh shell parses a multipipe block graph, it
initially connects all processes together into a ring topology
(Section 3.1). It connects nodes that fan-in from multiple
inputs or fan-out to multiple outputs through the communi-
cation channel concentrator. The ring setup allows the pro-
cesses to allocate and obtain the required communication
channels (pipes) by means of the dgsh interprocess commu-
nication protocol and the corresponding negotiation proce-
dure (Section 3.3). All dgsh-compatible programs are linked
with the dgsh library, which implements the negotiation
procedure and hands to the participating processes corre-
spondingly allocated pipe endpoints.

Dgsh uses internally two powerful underutilized IPCmech-
anisms: socket pairs and Unix domain sockets. It builds on
them to provide higher-level abstractions in the same way as
high-level programming languages are implemented using
low-level machine instructions. Socket pairs are unnamed
pairs of connected sockets. Compared to traditional Unix
pipes, socket pairs offer bidirectional communication and the

ability to transmit file descriptors between processes. Dgsh
uses them during the negotiation phase, which allocates and
distributes the pipes that will be used to transfer the process-
ing data (Section 3.1). Unix domain sockets are another low-
level mechanism. They are difficult to use, because few stan-
dard Unix utilities provide a shell-level interface to them.
Dgsh uses them for transferring data between arbitrary pro-
cesses through the stored value inter-process communication
commands described in Section 3.2.

3.1 Shell Extensions and Ring Setup

Dgsh extends the bash shell [14] with multipipe blocks that
allow the construction of directed acyclic process graphs.

Bash’s modification involves:

� the parsing of multipipe blocks,
� the connection of all processes into a ring communi-

cation topology, using concentrator processes where
required,

� the use of socket pairs, rather than pipes, to connect
the ring’s processes together,

� the setup of the DGSH_IN and DGSH_OUT environment
variables, which dgsh-compatible processes use in
order to negotiate on the corresponding I/O side(s)
to obtain multipipe I/O communication channels,

� the definition of the call alias,
� the setting of a path to the installation location of the

adapted programs and executable scripts forwrapped
commands,

� the adjustment of signal handling to ensure all pro-
cesses on the graph are correctly terminated, and

� the support of visualization.
In order to communicate the required and available con-

nections between processes, a negotiation message block
has to pass (multiple times) through all the graph’s pro-
cesses. For this to happen, the standard I/O channels of con-
nected processes should support both read and write
access, so that when the message block reaches the end of a
graph’s leaf part it can travel back to its origin. The Unix
pipes that shells use to connect processes, only allow com-
munication in one direction. To address this problem we
modified bash to initially connect processes in dgsh graphs,
instead of pipes, with unnamed pairs of connected sockets
(socket pairs), which support bidirectional communication.

In addition, at the input and output side of multipipe
blocks, a helper program, the dgsh concentrator (dgsh-conc),
allowsmultiple processes to be connected for passing around
the message block. The modified bash dynamically creates
and executes each concentrator process with arguments the
number of processes that will be connected to it and its type,
that is input or output. Then bash connects the concentrator
with the I/O channels of the processes attached to it.

Thus, the concentrator, acts as a network switch between
producer and consumer processes that will communicate in
a one-to-many or many-to-one fashion. It passes the negotia-
tion message block among the processes connected to it
according to routing rules illustrated in Fig. 2. The concentra-
tor merely facilitates the negotiation procedure by passing
around the message block, it does not participate in it. It is
required a) to allow processes with a single input or output
to communicate with many, and b) to establish a circular
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path traversing all the graph’s nodes. When the negotiation
procedure finishes, concentrators are disconnected from the
graph of communicating processes and terminate.

Fig. 2 details how processes within a multipipe block are
connected through the concentrator. The numbers represent
file descriptors available for input and output (0 is the stan-
dard input; 1 is the standard output) and the arrows show
the message routing enforced by an input or output concen-
trator. A many-to-many connection is implemented through
the pairing of an input concentrator to an output one. A con-
centrator process can also be connected to another one when
multipipe blocks are directly connected together or nested
within one another.

The communication flow that results by following the
routing rules of concentrators corresponds to a depth first
search algorithm. Fig. 3 presents this flow on the process
graph of the short example script given in Listing 2 and
illustrated in Fig. 6. The key elements of the ring communi-
cation setup algorithm are the following.

� Processes on a linear path send the message block to
the next one; at the end of a path (dgsh processes that
receive dgsh-compatible input, but are not connected
for dgsh-compatible output), the message block is
sent back toward its origin.

� Output concentrators communicate the block to their
output channels in order; in this way they enforce
traversing of unexplored paths.

� Input concentrators allow the message block to
continue its course deeper into the graph only
when it comes from their first input (the standard
input channel); when they receive it from other
input channels they send the message block back,
thus pruning the multiple traversal of the explored
path.

Listing 3. Compare C source files in two directory
hierarchies

{{
find $1 �type f �name ‘*.[ch]’ �print j sort
find $2 �type f �name ‘*.[ch]’ �print j sort

}} j
join

In graphs where there are more than one paths to start
from, there is no way to switch between unexplored paths.
As an example, consider Listing 3, which results in the
graph depicted in Fig. 4. The problem arises, because an
input concentrator is put before join to prune explored
paths, but an output concentrator, which would communi-
cate the message block from path to path, is absent. In these
cases we create a special output concentrator that takes no
input and merely connects the candidate initiating pro-
cesses. There the concentrator plays the role of the initiating
process. It creates the message block and sends it to the first
unexplored path according to the routing rules. When the
concentrator receives the message block back, that means
that a starting path is exhausted. Then the concentrator
routes the message block to the next path until all paths are
explored.

The ability to construct sophisticated processing topolo-
gies brings with it the need for visualizing them. The gener-
ated processing graph can be visualized by running dgsh
with the environment variable DGSH_DOT_DRAW set to the
name of a file where the graph’s representation will be writ-
ten. Two graphs are output for each script, the fully con-
nected graph used during the negotiation and the one that

Fig. 2. The dgsh concentrator: Connecting (a) the standard output of a
single producer process to the standard input of many consumer pro-
cesses, and, (b) the standard output of many producer processes to the
standard input of a single consumer process.

Fig. 3. Process connections and message block flow during the negotiation procedure for the example script in Listing 2.
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is used during the actual processing. The graphs are output
in a format directly processable by GraphViz [17] dot [18],
which can easily render the graph’s specification into a vari-
ety of output formats. The images depicted in Fig. 7 were
generated in this way.

Finally, to aid the troubleshooting of complex processing
topologies, a debugging command-line option makes dgsh
output additional information, such as the indexes of the
processes on the graph.

3.2 New and Modified Unix Tools

Dgsh requires tools to be aware of it in order to participate in
the negotiation procedure and retrieve the connections
required for their operation. In addition, the multipipe capa-
bilities of dgsh allow tools to offer, as part of their interface,
multiple stream inputs or outputs. This is done when tools
that naturally process multiple input streams (e.g., join,
comm, sort –merge) or generate multiple output streams (e.g.,
grep, comm) expose their input and output channels to dgsh.

Based on this insight, we decided1 to adapt some select
existing Unix tools to take advantage of dgsh’s capabilities.
Note that this also happened when the original Unix pipes
were implemented: a frantic effort converted existing Unix
tools into filters [1]. With dgsh the terms standard input and
standard output that trace back to 1963 and the SNOBOL pro-
gramming language [19] often lose their special meaning.

The tool comm, for instance, which is used to find common
lines between two input streams, can currently accept one of
the streams from its standard input. A modified version of it
for use with dgsh can take two stream inputs. In addition,
comm provides a single output configurable through com-
mand-line flags, which can contain lines occurring only in
the first stream, only in the second stream, or in both. The
modified version can provide all types of differences
between the two inputs in three different output streams.

Table 1 presents eight Unix tools adapted to support dgsh
pipelines, as well as the dgsh helper tools with their input and
output affordances. Of the Unix tools, grep can take both the
pattern to match and the text to search as streams and can
provide matching and non-matching lines and files in four
different output streams. The paste tool can horizontally stitch
together an arbitrary number of input streams, while sort can
merge-sort multiple input streams. The modified diff and join
tools can receive both of their inputs through pipe streams.

Dgsh-tee (available through file system links as tee, cat, and
perm) will read data from an arbitrary number of input sour-
ces and send it to an arbitrary number of output sinks. All
sources and sinks can be pipe endpoints obtained through
the dgsh negotiation procedure. It resembles in its operation
the Unix tee and cat programs, but offers additional capabili-
ties required for the operation of dgsh. In contrast to the stan-
dard implementation of tee, dgsh-tee will buffer the data it
handles, so it will prevent a deadlock or starvation when one

or more sinks are unable to read data. To accommodate buff-
ering of large data sets, dgsh-tee allows the specification of
the main memory buffer size and a directory to use for tem-
porary files when the main memory buffer overflows.
Through a command-line option, dgsh-tee can be setup to
scatter its input fairly across the sinks, rather than copying it
to all. When this option is in effect, the input data are divided
into chunks of one or more lines or blocks, and each chunk is
written only to a single sink. This is useful for dividing the
work among multiple processes operating in parallel. The
work allocation can be performed by dgsh-parallel, a dgsh tool
modelled afterGNU parallel [22], which implements the split-
apply-combine data processing strategy [23]. The dgsh-tee com-
mand also provides a command-line option to implement
the generalization of the transposition Flownomial connector
aXb [20], [21]. This permutes the command’sN inputs intoN
outputs in a specified order.

Dgsh-wrap is a helper tool that participates in a negotia-
tion procedure on behalf of a specified command. This
extends the programs that can work with dgsh to cover all
command-line tools by wrapping them on the fly. Wrap-
ping is preferable to source code adaptation for two reasons.
First, wrapping tools rather than adapting their source code
is a trivial operation, which doesn’t require access to the
source code and a build environment. Second, there are
Unix tools, such as uniq and tr, whose adaptation would not
open new opportunities for use, because they are filters
with just a single input and output. On the other hand, the
wrapping process is not used on all commands, because, as
outlined at the beginning of this section, some can become
more flexible, responsive, and expressive through special-
ized adaptation. As an example the comm, cut, and grep com-
mands can distribute their output to multiple output
streams, while the provided versions of the cat and tee com-
mands reduce blocking along the dgsh graphs through buff-
ering and synchronous I/O multiplexing.

Dgsh-wrap receives as arguments a command and any
particular I/O requirements it has. These are specified
through two command-line flags, –mute, -m and –deaf, -d,
which mean that the program does not require output or
input respectively. The dgsh-wrap tool also supports in

Fig. 4. Compare C source files in two directory hierarchies.

TABLE 1
Tools Adapted or Developed for Multipipe Use with dgsh

Tool Input
channels

Output
channels

Flownomial connector
[20], [21]

cat (dgsh-tee) 0–N 1 _k
a; Ia

comm 0–2 0–3
diff 0–2 0–1
grep 0–2 0–4
join 0–2 0–1
paste 0–N 0–1
perm (dgsh-tee) 1–N 1–N aXb

sort 0–N 0–1
tee (dgsh-tee) 1 0–N ^k

a

dgsh-readval 0 1
dgsh-wrap 0–N 0–1
dgsh-parallel 0–N 0–N
dgsh-enumerate 0 0–N
dgsh-writeval 1 0
dgsh-merge-sum 1 0

1. Following a suggestion by Doug McIlroy.
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command line arguments the placeholder “<|”, which sig-
nifies that a command will accept additional input streams.
This placeholder is then passed to the command as the file
descriptor N by using the file path /proc/self/fd/N .
The -s command-line flag can be used to signal that the
command’s standard input should also be passed to the
command as a file descriptor argument.

After the negotiation’s end, when all connections are
ready, dgsh-wrap executes the command. In this way any
Unix command-line program can be adapted to participate
in dgsh pipelines with minimal effort.

To avoid the hassle of prepending dgsh-wrap to existing
tools, dgsh automatically prepends dgsh-wrap to all non-dgsh
compatible commands participating in a dgsh graph when it
prepares their execution. In addition, for tools with special
I/O requirements, e.g., echo, which takes no input, the dgsh
distribution places into a path location looked up first, exe-
cutable scripts with the same name as each tool and appro-
priate command-line arguments. For instance, an executable
script for echo is placed in /usr/local/libexec/dgsh/echo and con-
tains the following code.

#!/usr/local/libexec/dgsh/dgsh�wrap �d /bin/echo

Dgsh-writeval and dgsh-readval support asynchronous data
transfer between arbitrary processes through the storage of a
data stream’s last record into a named buffer. This record
can be later retrieved asynchronously by one or more read-
ers. Data in a stored value can be piped into a process or out
of it, or it can be read using the shell’s command output sub-
stitution syntax. Stored values are implemented internally
through Unix-domain sockets, a background-running store
program (dgsh-writeval) and a reader program (dgsh-readval).

Dgsh-writevalwill read values from its standard input and
make them available to other processes for reading through
a specifiedUnix-domain socket. Thus, a dgsh-writeval process
acts as a data store: it reads a series of values (think of them as
assignments), and provides a way to read the store’s current
value (from the socket). By default dgsh-writeval will retain
the last value it reads (a newline-terminated line or a data
block of a specified length). The default behavior can be
modified through options so that it stores a specified data
window (e.g., the last 100 records) of a stream it processes.

Dgsh-readval is the data store client, which complements
dgsh-writeval. By default it will communicate with the store
specified through the path to a Unix domain socket, ask to
read the last (final) record written to that store, and write
the value on its standard output. Its behavior on failures is
designed to circumvent various race conditions that can
arise when the stores and the read clients start concurrently.
An option can be used for dgsh-readval to ask dgsh-writeval to
terminate.

3.3 Interprocess Communication Setup

Dgsh supports the realization of non-linear pipelines
through the already described multipipe blocks ({{ ...}}) and
an interprocess communication protocol implementing a
negotiation procedure among the participating dgsh processes.

The runtime negotiation procedure is required in order to
accommodate the combination of two types of commands.
First, commands that change the number of required input
or provided output channels based on command-line

arguments, and second, commands that can dynamically
adjust the number of I/O channels they can process based on
upstream or downstream requirements. As a (contrived)
motivating example consider the following dgsh pipeline.

comm �3 | paste

The comm command compares two sorted input streams
and outputs records that exist only in the first one, only in
the second one, or in both. Its command-line arguments
allow the suppression of any of the three outputs. Therefore,
a modified dgsh-compatible version of comm that sends each
of the three result sets to a separate output stream, can have
zero to three outputs (two in the preceding example, which
suppresses the common records). Furthermore, a dgsh-com-
patible version of the paste command, which combines into
a single line sequentially corresponding lines from multiple
inputs, can support an arbitrary number of input channels.
Consequently, in our example comm must inform paste that
it will supply two output channels, and paste must adjust its
behavior to read from exactly two input channels.

Before the negotiation procedure is run, dgsh creates
socket pairs and concentrators to connect the graph’s pro-
cesses into a circular ring, as described in Section 3.1. Then,
the dgsh processes connected in the ring run the negotiation
procedure and also create Unix domain sockets correspond-
ing to any stored values. The resources supporting the nego-
tiation procedure are freed or terminated at the end of it or
in case of an error.

The negotiation procedure involves collecting processes’
I/O requirements to allocate dynamically the input and out-
put connections the processes require. The phases of the
negotiation procedure are:

1) communicate input and output constraints,
2) solve the I/O constraint problem,
3) communicate the solution, and,
4) create and allocate pipes.
In phase 1, processes communicate their input and output

requirements. The procedure is initiated by a process with
no dgsh pipe connected to its input channel or the specially
connected output concentrator, if more than one such pro-
cesses exist. The initiating process creates a message block
to store the topology of the graph, that is, the processes and
the connections between them. Each process through which
the message block passes, fills in the block its identification
and the number of I/O channels it requires and provides. It
then dispatches the block to the next process on the graph
through the ring’s socket pairs. Phase 1 terminates when
the initiating process receives back the message block.

In phase 2 the initiating process, having received the mes-
sage block with the I/O requirements of all processes in the
graph, executes the algorithm for solving the I/O constraint
problem. The algorithm makes an initial allocation of each
process’s fixed I/O channels to edges so that all available
channels are reserved. Then it traverses the graph edge by
edge and cross matches the allocations of the connected
graph. We distinguish the following cases when cross
matching each edge’s pair of constraints.

� Flexible – flexible: Assign exactly one connection to the
pair.

SPINELLIS AND FRAGKOULIS: EXTENDING UNIX PIPELINES TO DAGS 1553



� Fixed – flexible: Assign connections equal to the fixed
constraint.

� Fixed – fixed: If the two constraints are equal, assign
the same number of connections. Otherwise,
assign the minimum of the two numbers to both
processes, and move the unmatched connections
to another process along the appropriate graph
branch, prioritizing moves to processes with flexi-
ble requirements.

Fig. 5 presents a simple application of the algorithm on
Listing 2’s script. The column titled “Phase 1” shows the
results of assigning weight to edges with fixed con-
straints, while the one titled “Phase 2” shows the results
after applying cross match constraints node-wise and
edge-wise. Edges connecting a process with flexible
requirements are resolved at the cross matching phase,
because the pair’s process with the fixed constraint
decides the outcome.

The algorithm’s output is the number of I/O connections
allocated to each process. As a last step of phase 2, the result
is incorporated into an updated message block, which is
again sent to traverse the graph.

In phase 3, the initiating process communicates to all pro-
cesses the message block containing the computed solution.
The phase terminates when the initiating process receives
back the message block.

Finally, in phase 4, processes with outgoing connections
create the allocated number of pipes and send the output
file descriptor via the sendmsg() system call through the
socket pair connected to their standard output. Processes
with incoming connections await to get the input file
descriptors for their pipes from the socket pair connected to
their standard input. The concentrator receives the file
descriptors from producer process(es) and communicates
them to consumer process(es) according to the solution

found in the message block. A complication arises when
multipipe blocks are nested within one another, which
results in multiple concentrators connected to each other. In
this case the communicated pipes have to go through a
number of intermediate concentrators. After the successful
completion of this phase, the concentrators terminate and
processes start their normal execution.

Fig. 6 depicts the graph after the negotiation procedure,
when the connections have been setup and the programs
are running. Note the highlighted sort process in the middle
of Fig. 6, which is only connected to the terminal tee process.
This sort process sorts a file; therefore it neither requires nor
receives an input stream.

Dgsh-negotiate is the library that implements the negotia-
tion procedure. All processes in the graph use it—directly
or through dgsh-wrap—in order to participate in the negotia-
tion procedure. The library exposes a single API function.

#include <dgsh.h>

int dgsh_negotiate(int flags, const char *prog_name,
int *n_input_fds, int *n_output_fds,
int **input_fds, int **output_fds);

When the function is called, the n_input_fds and n_output_
fds arguments point to the number of input and output
channels respectively that the program can accommodate.
When the function returns successfully, the pointed inte-
gers are set to the number of channels that the program
should use. In that case, the input_fds and output_fds argu-
ments are set by the library to point to dynamically allo-
cated memory buffers containing the file descriptors to
use for input and output. The flags argument is used for
adjusting the function’s behavior and for extending the
API in the future. Currently, the only available flag is
DGSH_HANDLE_ERROR. This modifies the function so that if
an error occurs during the negotiation, it will print an

Fig. 5. The phase 2 I/O constraint satisfaction algorithm applied on Listing 2’s script.

Fig. 6. Visualisation of data flow along the process graph expressed in Listing 2 during execution.
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error message to the standard error and exit the program,
rather than return with an error code. The program’s
name, given as the prog_name argument, is used for pro-
viding diagnostic output and for naming nodes in the
GraphViz visualization files.

4 REPRESENTATIVE EXAMPLES

We have devised numerous examples demonstrating the
expressiveness, versatility, and performance of dgsh. Their
processing topologies can be seen in Fig. 7. In the Figure,

Fig. 7. Toplogies of some examplar dgsh applications, and commented lines of code required for their implementation.
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processes are depicted as ellipses. The command arguments
are not included in the diagrams in order to conserve space
by eliminating non-essential details. Each sub-figure’s cap-
tion ends with the lines of code required for the correspond-
ing implementation. The source code for all examples is
available online;2 what follows here is a brief description of
the processing performed by each depicted example, and the
dgsh facilities demonstrated by it. Other examples included
in the dgsh distribution compute properties of an incoming
text stream, calculate codemetrics, and process nuclear mag-
netic resonance in-phase/anti-phase channels obtained from
heteronuclear single quantum coherence spectroscopy.

To identify C/C++ symbols that should be declared with
file-local visibility (static) the example in Fig. 7a starts with a
find command combinedwith nm to produce all defined sym-
bols. The symbols are then provided to two separate pipe-
lines that filter them to produce all defined or exported
symbols and all undefined or imported symbols respectively.
The two streams feed the input of comm that only prints the
symbols found in the first stream, that is, the exported ones
that are unused in other files, which should be declared static.

The task of finding duplicate files in a directory hierarchy
can be easily and efficiently implemented by calculating a
hash for each file, ordering those hashes, and finding dupli-
cate ones. The use of standardUnix commands for this task is
difficult, because uniq, which can find duplicate lines, works
at a line rather than field level, and therefore requires the iso-
lation of the hashes from the path names. Using dgsh streams,
the hashes of duplicate files can be isolated and then joined
again with their names after the processing, by using the
Unix relational join command, join, with the files’ hash as the
key. The corresponding sequence is depicted in Fig. 7b.

Listing 4. Calculate commit statistics

# Order input records by their frequency
forder() { sort j uniq �c j sort �rn }
git log ��format=”%an:%ad” �date=default “$@” j
tee j
{{
echo “Authors ordered by number of commits”
awk �F: ‘{print $1}’ j
forder
echo “Days ordered by number of commits”
awk �F: ‘{print substr(2; 1; 3)}’ j
forder

}} j
cat

The simple sequence in Fig. 7c processes the output of a
git log command, and lists the authors and days of the week
ordered by the number of associated commits. A single
(often expensive) pass through Git’s revision graph is used
to generate both data streams. The script demonstrates the
use of standard shell functions whose contained commands
take part in the negotiation procedure. The complete source
code of the script is included in Listing 4.

The sequence in Fig. 7d reads data from its standard input,
and reports file type, length, and compression performance

for that data. The data never touch the disk. The sequence
demonstrates the use of multipipe blocks to efficiently paral-
lelise computations and gather their output in a deterministic
order.

In the example shown in Fig. 7f, four input streams are
combined through the Unix paste command, to list words
with specified properties in the script’s standard input:
those containing a two-letter palindrome, those containing
four consonants, and those longer than 12 characters.

The sequence in Fig. 7f implements a fast Fourier trans-
form (FFT) via matrix factorization through the parallel proc-
essing of the signal flow [24]. The v nodes are defined as
follows:

v s n � vn
m¼2s � e

2pi
m

� �n

Each stage of the transform is connected to the next one
through the permutation command perm (aXb), which reor-
ders the flow as required by the signal flow graph’s so-
called butterfly operations. (To save space, the perm com-
mands are not shown in the Figure.)

Processing with dgsh is not restricted to text streams. The
more complex example illustrated in Fig. 7g will process a
project’s Git history, filter the intermediate results, and cre-
ate through morphological convolution two PNG diagrams
depicting committer activity over time, with the most
active committers appearing at the diagram’s center verti-
cal. The generated image is drawn in parallel by two pro-
cesses: one that converts it directly into PNG format and one
that scales it before the conversion.

Consider the (real world) task ofmapping files and direc-
tories that havemovedduring a project’s evolution from their
old to their new location. This task is performed by the script
shown in Fig. 7h. Given two directory hierarchies A and B
passed as input arguments (where these represent a project at
different parts of its lifetime) the script will copy the files of
hierarchy A to a new directory, passed as a third argument,
corresponding to the structure of directories inB. This is done
by calculating signatures for all lines in each hierarchy, joining
them by file name and content, generating commands for
copying files and creating directories, and then ordering those
commands so that directories are created before files are cop-
ied to them. The script demonstrates the use of join to gather
results from streams in an output multipipe block, and the
use of tee to order asynchronously produced results from it. It
also demonstrates the use of a new bash alias, call, which
allows exported bash functions to participate in dgsh pipelines.
The function line_signatures calculates signatures for all lines
in a hierarchy. Behind the scenes, line_signatures is executed
by another bash instance that is wrapped with dgsh-wrap in
order to participate in the negotiation procedure. The call alias
command resolves to the following.

dgsh�wrap bash �c ’line_signatures’

The example shown in Fig. 7i, demonstrates using the
tools of the Madagascar research environment [12], and
also having two independent dgsh pipelines in the same
script. (Only one is shown in the Figure.) The script creates
two graphs: a broadened pulse and the real part of its 2D
Fourier transform, and a simulated air wave and the ampli-
tude of its 2D Fourier transform. Data are sent toMadagascar
commands, such as as sffft1, which performs a fast Fourier2. http://www.spinellis.gr/sw/dgsh/#examples
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transform along the first axis, sfwindow, which extracts a data
set’s window portion, sfgrey, which generates a raster plot,
and sfread/sfimag, which extract a complex data set’s real or
imaginary part. The generated data streams have a mathe-
matical function applied to them through sfmath as follows.

}} |
sfmath nostdin=y re=<| im=<|\
output=“sqrt(re*re+im*im)” |

Sfmath can receive input either from its standard input or
from files. In our example, sfmath takes two input streams
mapped to arguments “re” and “im” respectively. The out-
put is computed according to the formula specified in the
“output” argument given the two input streams. Because
the single standard input channel is insufficient due to the
presence of two input streams, we feed input to sfmath
through two “<|” placeholder file arguments and force it
to ignore its standard input channel.

Finally, the example shown in Fig. 7j demonstrates the
use of dgsh for the analysis of web log data. When the corre-
sponding stream is given as input a web server’s log data, it
will produce a report indicating the total number of
accesses, web pages, hosts, domains, area requests, and
bytes served and accesses per hour, date, and day of week.
Computations are efficiently parallelised through a hierar-
chy of multipipe blocks up to four levels deep.

5 EVALUATION

We analyzed the performance and expressiveness of dgsh by
comparing it with currently used alternatives.

5.1 Performance

The performance of dgsh was evaluated by running the
diverse example programs that were written to illustrate its
expressiveness on large data sets. Many of the benchmarked
programs were presented in Section 4; all are included
together with the measurement scripts in the dgsh
distribution.

The key numbers associated with the benchmarks are
listed in Table 2. A row for each run lists the example’s
name, the benchmarked implementation (sh is used to
denote the use of linear pipelines and temporary files to dis-
tribute data to multiple sinks), the duration of the negotia-
tion procedure for dgsh scripts (Neg.), the real (elapsed),
user, and system time associated with the run, and the dgsh
speedup compared to the particular alternative implemen-
tation (Timp:=Tdgsh). A more detailed description of the
table’s columns follows.

The second column of Table 2 states how each program
was run. The alternatives are a) a pipe network constructed
by dgsh and, b) having sgsh, the ancestor of dgsh, transform
the program into an equivalent one that uses only linear
pipelines and temporary files. For a few examples other
alternative implementations were also benchmarked. The
web-log-report example was written to reimplement a more
than a decade old Perl script, which was benchmarked as
well. After seeing the large speedup obtained by the dgsh
implementation, a compatible implementation was also
coded in Java, which, in turn, prompted the implementation
in Java of the text-properties example. In addition, the ft2d
example was also benchmarked using the SCons (a name

derived from Software Construction) front-end, which is
distributed with the Madagascar research environment as a
superior alternative to the classic make utility.

The same programs were also run with dgsh and sgsh on
an empty data set, to examine the overhead imposed by
dgsh’s negotiation procedure. The third column of Table 2
presents this cost. We observe that it amounts to a fraction of
the script’s execution time ranging approximately between
10-100milliseconds irrespective of the size of the graph.

Regarding the speedup shown in the last column, Timp: is
the execution time of a program in terms of real (elapsed)
time using the specified alternative implementation to dgsh
while Tdgsh is the execution time of a program using dgsh,
again in terms of real (elapsed) time.

The following datasets were used:

� The text of three Project Gutenberg books repeated
ten times: (History of the United States by Charles A.
Beard and Mary Ritter Beard, The Adventures of
Sherlock Holmes by Arthur Conan Doyle, and Les
Mis�erables by Victor Hugo). This was used for bench-
marking the programs spell-highlight, word-properties,
compress-compare, and text-properties.

� The web server log clarknet_access_log_Aug28
retrieved from the Internet Traffic Archive [25].
(Used by web-log-report.)

� The Linux Git repository3 between commit points
1da177e4c and 899552d6e. (Used by commit-stats,
code-metrics, and map-hierarchy.)

TABLE 2
Performance and Resource Utilization of dgsh Compared to

Alternative Implementations

Task Imp. Time (s) Speed.

Neg. Real User Sys.

code-metrics dgsh 0.06 100.48 190.44 10.86
sh 102.42 198.76 4.53 1.0

commit-stats dgsh 0.02 5.01 9.02 3.59
sh 6.06 6.11 1.42 1.2

compress-compare dgsh 0.08 29.74 38.13 0.32
sh 37.85 37.65 0.11 1.3

duplicate-files dgsh 0.11 21.81 20.36 1.94
sh 24.78 20.69 1.99 1.1

ft2d dgsh 0.09 19.38 22.54 5.98
sh 23.16 20.79 3.32 1.2

SCons 25.13 22.06 3.39 1.3
map-hierarchy dgsh 0.06 102.29 57.96 15.29

sh 136.17 51.55 11.01 1.3
spell-highlight dgsh 0.11 7.63 7.61 0.27

sh 9.38 9.36 0.20 1.2
static-functions dgsh 0.09 5.55 3.96 0.47

sh 7.13 6.80 0.59 1.3
text-properties dgsh 0.01 17.18 80.29 0.58

sh 30.96 51.88 0.20 1.8
Java 13.02 13.32 0.18 0.8

web-log-report dgsh 0.07 6.75 22.56 5.54
sh 15.57 15.13 2.95 2.3
Java 11.13 12.08 0.19 1.6
Perl 54.01 48.61 5.29 8.0

word-properties dgsh 0.02 3.97 3.88 0.1
sh 3.85 3.88 0.06 0.9

3. https://github.com/torvalds/linux.git
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The tests were run on an eight core (two four-core Intel
Xeon E5-1410 processors operating at 2.80 GHz) machine
with 12 GB of RAM, and five 1.8 TB disks attached through a
6 Gb/s PERC H 710 PCI Express RAID controller, running the
Debian GNU/Linux 8.6 (jessie) distribution. To minimize
the effects of caching, all scripts were run twice in an other-
wise idle system, and only the results of the second execu-
tion were retained.

As can be seen, in nine out of eleven cases dgsh offers a
speedup (the job executes faster in real time) compared to
the plain sh performance, in one case the performance is
the same, and in one (word-properties) its performance is
slightly lower. Also evident is the fact that most dgsh
implementations are less efficient that the plain sh ones,
consuming more CPU resources. Apparently, this happens,
because they utilize more CPU cores, trading CPU utilization
to gain performance. In one case (web-log-report) the dgsh
implementation outperformed significantly not only an
equivalent Perl script, but also a Java program running the
same task.

5.2 Expressiveness

We evaluate the expressiveness for dgsh by comparing pro-
grams that can be written in it against some generally avail-
able alternatives: the process substitution offered by the
bash shell and the explicit construction of named pipes.
Although formal ways to evaluate a language’s expressive-
ness have been proposed [26], our goal here is to demon-
strate the practical merits of using dgsh rather than claim
expressiveness superiority in a formal sense.

Consider as an example, the following short dgsh script,
in which two processes, b and c, receive their input from
process a and send their output to d.

a | {{
b
c

}} | d

The two halves of the process connection graph can be
expressed using the process substitution mechanism of
bash: a can send its output to b and c,

a >(b) >(c)

and d can derive its input from b and c.

d <(b) <(c)

Unfortunately, the process substitution mechanism does not
offer a way to express both halves together, because the syn-
tax that allows a process to substitute a named file can only
be used as an argument to a single process (specifying an
input or an output file, but not both).

Connecting all the example’s processes together can be
achieved by creating named pipes and redirecting through
them, as shown in Listing 5. However, this alternative is
more verbose, requires the meticulous specification of all
input and output connections through the named pipe end-
points, and entails the explicit construction and removal of
the named pipes.

Some Unix shells also offer a co-process mechanism that
automatically associates a process with pipes connected on
its input and output. Yet this facility is typically restricted to

a single asynchronously running process, thus prohibiting
the creation of more complex process graphs.

Listing 5. Connecting processes through named pipes

mkfifo b.inp b.out c.inp c.out
d b.out c.out &
b < b.inp> b.out &
c < c.inp > c.out &
a b.inp c.inp
rm b.inp b.out c.inp c.out

6 RELATED WORK

The ideas behind dgsh and related systems trace their ori-
gins to the theory [27], methods [28], and languages [29]
associated with data flow programming [20], [21] and process
networks [30], [31]. A number of shells developed in the past
have addressed the problem of specifying non-linear pipe
topologies in diverse ways. The approach adopted by dgsh
improves over those designs in terms of syntax, generality,
performance, and compatibility with a widely used shell.

State of the art frameworks for expressing and executing
complex data flows and process networks are of two types:
a) workflow management and task scheduling frameworks
designed primarily for batch processing, such as Luigi,4

Airflow,5 and Dask6 and, b) stream processing engines,
such as Apache Spark Streaming [32], Apache Storm,7 and
Apache Flink [33].

The frameworks for batch processing offer scalable paral-
lelized workflow management of DAG topologies in a fault-
tolerant manner, but do not allow I/O communication
between the processes in a streaming fashion. Only Dask
offers stream processing, which is limited to standard
Python queue objects. In addition, all three frameworks run
on top of the Python platform and require explicit configu-
ration of a process graph through Python code for defining
aspects such as dependencies and sinks.

The stream processing engines are fault-tolerant, scal-
able, and support stream processing algorithms, such as
windowing. All three support DAG data flows in specific
programming languages, for the most part Java, Python,
and Scala. In Storm, support for more programming lan-
guages is possible through an adapter library that imple-
ments the communication protocol for sharing data in JSON

format. Adapter libraries are currently available for Python,
Ruby, and Fancy.

One issue with stream processing regards unbounded
memory requirements. Storm escapes unbounded memory
requirements by allowing users to tweak the data produc-
tion and consumption ratio, increase the buffers’ size for all
or a specific topology, and set the maximum number of
pending tuples (max spout pending), which configures the
rate of data emission from external sources. Flink adjusts to
the pressure of data production at higher rates than data
consumption by slowing down the producers. Spark
Streaming divides the data into small batches that are

4. https://github.com/spotify/luigi
5. https://airflow.incubator.apache.org/
6. http://dask.pydata.org/en/latest/
7. https://storm.apache.org
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allocated to workers and uses dynamic load balancing to
avoid struggle effects.

Compared to the data flow and process network frame-
works, dgsh supports stream processing of DAGs of com-
mands written in any programming language through a
pipes and filters architecture using the syntax and semantics
of the bash shell. Regarding unbounded memory require-
ments, dgsh-tee, which copies, gathers, or scatters data from
or to multiple sources or sinks, provides command-line
arguments for configuring the buffering of data. Dgsh-tee
can use all of a machine’s available memory and also tem-
porary files if the main memory space is not sufficient. On
the other hand, dgsh-tee cannot fine-tune the I/O rate.

Rochkind’s 2dsh (reference [34] as cited by Korn [35])
reportedly supported a network of processes, but has not
seen further development. Tom Duff’s rc shell [36] supports
trees through pipeline branching. The branches are created by
writing a command’s file argument in a form that denotes
the standard output of a specified command’s execution.
For example, the command cmp <{old} <{new}will com-
pare the output of command old with the output of com-
mand new while tee <{proc1} <{proc2} will have both
proc1 and proc2 process the standard input of tee. A similar
syntax, with the use of brackets instead of curly braces, is
also supported by the bash shell under the term process sub-
stitution [14, p. 219]. The rc and bash approach provides sim-
ilar affordances to dgsh’s in terms of multipipe blocks, but,
unlike dgsh, the approach does not allow the combination of
output multipipe blocks with input ones.

The gsh shell [37] allows the creation of arbitrary graphs
by specifying named channels as input and output for com-
mands. Similarly to dgsh, gsh uses a specially crafted com-
mand, TEE, for distributing the output of one process to
many others and relies on custom-modified programs, with
uppercase names such as DIFF, GREP, SED, and SORT. In contrast
to dgsh, gsh supports interactive use through a prompt that
indicates when the specified graph is fully connected. In
addition, gsh does not allow channels to be passed to pro-
cesses as arguments, while with dgsh-wrap any tool can par-
ticipate in a dgsh script. The gsh author hints that file
descriptor drivers (/dev/fdN) and FIFOs could be used to
address this deficiency.

Another system that allows the creation of arbitrary pro-
cess communication graphs is expect. This differs significantly
from the other shells described so far, because inter-process
communication is performed explicitly through a high-level
procedural language based on Tcl [38]. The expect tool, target-
ing the need to automate the operation of interactive
applications, bases inter-process communication on pseudo-
terminals rather than pipes. Consequently, its users pay the
price of interfacingwith the system’s pseudo-terminal driver.

Two systems, MTX [39] and VUFC [40], solve the mismatch
between a complex graph topology and what can be speci-
fied in a linear textual language, by using a graphical nota-
tion and a corresponding editor. From the two systems MTX

is more powerful, because it allows the specification of
DAGs, whereas VUFC only allows the specification of process-
ing trees. In addition, MTX supports the dynamic reconfigu-
ration of the graph’s topology. A significant limitation of
MTX is that it merges internally the results of multiple
streams into one, with the option of adding a marker to

indicate the stream from which particular data arrive. This
puts the onus of demultiplexing data to applications, which
must be crafted to deal with such markers. The MTX shell
performs the dynamic reconfiguration by tying processes to
pseudo-terminals and, therefore, as is also the case for
expect, imposes the corresponding performance penalty to
communicating applications.

Given the stagnation of CPU clock frequencies and the
widespread availability of multi-core processors and multi-
processor clusters in cloud data centers, the efficient use of
these resources, especially for homogeneous data process-
ing, has attracted considerable interest. Two representative
systems that address the exploitation of computing clusters
are MapReduce [41] and Hadoop [42]. In contrast to dgsh,
these systems offer native support for allocating and sched-
uling tasks among the resources of a computing cluster. To
do that they require the custom implementation of the map
and reduce jobs, whereas dgsh can use existing tools for this
purpose. However, the Hadoop streaming utility that comes
with the Hadoop distribution,8 allows the specification of
Map/Reduce jobs with any executable program or script as
the mapper or the reducer.

Microsoft Dryad [43] is a general purpose distributed exe-
cution system and cluster manager for data parallel tasks. It
introduces a graph specification language for forming
directed acyclic data flow graphs. Dryad schedules programs
on the graph for execution on available workers in the under-
lying cluster and allows programs to communicate through
temporary files, TCP-level pipes, and shared memory FIFOs.
The API for specifying data flow graphs is available in C++.

Walker et al. [44] present an extension of bash’s shell pipes
to form DAGs but also graphs with cycles. The authors imple-
ment the concepts of shell fork, join, and cycle, where fork
and join resemble dgsh’s output and input multipipe blocks
respectively. Despite their common points, two main differ-
ences between thiswork and dgsh are that it supports non-lin-
ear uniform processing through the parallel and distributed
processing of a single program and the use of temporary files
to feed input from a producer process to consumer processes.

At the multicore utilization front, GNU Parallel is a Unix
command-line tool that helps executingmultiple jobs in paral-
lel [22]. It allocates the appropriate number of processes to
each CPU core, splits the input among the processes, and gath-
ers the output in a deterministic manner. GNU Parallel by
default groups the output of the specified jobs, printing the
results only once a command is finished. This requires storing
the output in temporary files with an associated overhead in
space and CPU resources, and thus prevents the pipeline from
streaming data from start to end. In contrast, dgsh encourages
the use of deterministic OðNÞ gather operators, where N is
the number of input processes. This approach allows the effi-
cient processing of infinitely long data streams.

Another entrant in this category is PUSH, a Unix shell
explicitly targeting data intensive supercomputing (DISC) [45].
PUSH allows the homogeneous splitting of work among pro-
cesses residing on multiple hosts through an abstraction
termed a multipipe. An interesting feature of PUSH is that,
rather than being data agnostic, it allows the specification of

8. http://hadoop.apache.org/docs/stable/streaming.html
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the input and output record separators, thus allowing the
automaticmultiplexing and demultiplexing of data.

7 CONCLUSION

In the preceding sections we showed that dgsh supports the
concise and readable implementation of many tasks that
call for a non-linear arrangement of data flow through
pipes. Most examined cases are associated with a speedup
compared to an implementation involving temporary files.

The facilities provided by dgsh address two trends inmod-
ern computing environments: sophisticated data processing
pipelines and multi-core or distributed executions. The non-
linear pipe configurations that dgsh supports, eliminate the
storage and performance overhead of temporary files, and
provide additional opportunities for processes to operate in
parallel. Increased opportunities for parallelism can be read-
ily exploited bymulti-core processors. In turn, increased par-
allelism and reduced temporary file overheads, help
achieving higher throughput in data processing applications.

Given the number of past attacks to the problem of con-
structing non-linear data flow configurations through a Unix
shell, thewidespread adoption of dgsh is not yet a given.How-
ever, thematch of its provided featureswithmodern needs, in
conjunctionwith its ability to be usedwith an existingwidely-
used shell, allows for a certain amount of optimism.

Two directions for futurework are the following. The nam-
ing of data streams can add more expressiveness in forming
process graphs. An example concerns processes that need to
process data that are available on a sibling processing stream
rather than directly upstream. Second, built-in support for
executing dgsh processes onmultiple hosts, can extend the use
of dgsh on computing clusters and distributed systems.

The improved throughput observed in data processing
performed with dgsh hints that there may be further room
for significant performance improvements by attacking the
costs of context switching and data copying. One such ave-
nue might be through the use of the fast I/O library [46], and
a facility that would allow multiple cooperating processes
to run as threads within a single process.

AVAILABILITY

The source code and documentation of dgsh are made avail-
able as open source software under the Apache license at
http://www.spinellis.gr/sw/dgsh. Enhancements, fixes,
and issues can be submitted through the GitHub URL

http://github.com/dspinellis/dgsh.
To compile and run dgsh a C compiler and GNU make

must be available. An installation of the GraphViz suite is
required for the visualization of dgsh graphs. The dgsh suite
has been tested under Debian and Ubuntu Linux, FreeBSD,
and macOS operating systems.
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