
Composing and Executing Parallel Data-flow Graphs with
Shell Pipes

Edward Walker
Texas Advanced Computing Center

University of Texas at Austin
Austin, TX, USA
1-512-232-6579

ewalker@tacc.utexas.edu

Weijia Xu
Texas Advanced Computing Center

University of Texas at Austin
Austin, TX, USA
1-512-232-7158

xwj@tacc.utexas.edu

Vinoth Chandar
Oracle Corporation
400 Oracle Parkway

Redwood Shores, CA, USA
1-650-607-0046

vinoth.chandar@oracle.com

ABSTRACT
In this paper we extend the concept of shell pipes to incorporate
forks, joins, cycles, and key-value aggregation. These extensions
enable the implementation of a class of data-flow computation
with strong deterministic properties, and provide a simple yet
powerful coordination layer for leveraging multi-language and
legacy components for large-scale parallel computation.
Concretely, this paper describes the design and implementation of
the language extensions in Bourne Again SHell (BASH), and
examines the performance of the system using micro and macro
benchmarks. The implemented system is shown to scale to
thousands of processors, enabling high throughput performance
for millions of processing tasks on large commodity compute
clusters.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications –
data-flow languages.

General Terms
Experimentation, Languages.

Keywords
Data-flow processing, parallel processing, coordination
languages.

1. INTRODUCTION
“One of the most widely admired contributions of Unix to the
culture of operating systems and command languages is the pipe.”
– Dennis M. Ritchie [1]

Shell pipes are a method for composing a group of applications
into one with higher-level functionality. The concept was
invented over 30 years ago in the original Unix shell [1], and
since then, scripting with pipes has become an essential tool for

many system administrators and software developers. The
popularity of shell pipes can be explained by their ability to
recursively compose: allowing for the creation of expendable
software toolkits of increasing sophistication from simpler
program components, which may themselves be composed from
pipes. Indeed, command pipelines in the earliest Unix
installations may arguably be the precursors of all modern
workflows.

To date, the success of pipes has resulted in the concept being
ported to a wide variety of operating systems, e.g. DOS, Windows
NT, Mach, and others. The concept has also motivated
implementations that have gone beyond the traditional shell
interface (see section 6 for related work). However, despite its
popularity, there is no prior art that has attempted to expand the
syntax and semantics of Unix pipes for parallel coordination in
the shell. With the proliferation of large commodity compute
clusters in academia and industry, we believe it is timely to
expand the concept of pipes for parallel processing. Furthermore,
because the shell remains the default login environment to the
operating system, we believe it provides an ideal coordination
layer for composing multi-language software programs into higher
level parallel constructs, idioms and applications -- extrapolating
the original Unix idea of expandable toolkits for large distributed-
memory compute clusters. Certainly, scripting in general is still
an important counterpart to stronger typed system languages [2]
because it remains an effective mechanism for rapidly automating
common computing tasks for the non-expert and expert
information technologist alike [3][4].

In this paper, we make three specific contributions. First, we
extend the concept of pipes to incorporate forks, joins, and cycles,
allowing the creation of data-flow graphs with similar properties
to Kahn Process Network (KPN) in the operating system shell.
KPNs are data-flow graphs that have strong deterministic
properties, allowing for correct parallel programs to be defined
without explicit locks or synchronization [5][6][8]. Second, we
introduce a simple shell language extension that incorporates a
higher-level concurrency pattern for key-value aggregation,
allowing MapReduce [17][18] type algorithms to be constructed
at the shell command line. This extension allows administrators
and developers to easily construct key-value algorithms for large-
scale analysis of unstructured data, similar to that proposed by
other well-known systems like Hadoop [22] and Dryad [25][26],
while benefitting from the deterministic properties provided by
KPNs. Third, we describe an expandable implementation
framework in Bourne Again SHell (BASH) that allows software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WORKS’09, Nov. 16, 2009, Portland, OR, USA.
Copyright 2009 ACM 978-1-60558-717-2/09/11…$10.00.

agents to be plugged into the shell to modify its run-time
behavior. This agent framework provides a flexible and
extensible mechanism for experimenting with ever more
sophisticated and robust run-time solutions for our proposed
extensions in the shell. In particular, we describe our agent
implementation which is shown to scale to thousands of
processors, enabling high throughput performance for millions of
processing tasks.

The paper is organized as follows. Section 2 introduces our
proposed shell extensions by illustrating a simple parallel
summation script. Section 3 then describes our pipeline semantic
extensions in detail: forks, joins, cycles and key-value
aggregation. Section 4 describes our design and implementation
in BASH, and section 5 describes our experimental evaluation of
the constructed system. Section 6 describes related work, and
section 7 concludes our paper with a brief discussion of future
directions.

2. A TRIVAL EXAMPLE
This section describes a simple parallel summation script in
BASH using some of our proposed extensions. We first assume
that a user has a list of numbers in a file called “f.dat”. The
user can compose a script to calculate the sum of the content of
the file in parallel with our shell as shown in Figure 1.

function part()
{
 while read i; do
 key=$(($i % $N))
 # new built-in: emits key-value pair
 emit_tuple –k $key –v $i
 done
}

function sum()
{
 # new built-in: reads key-value pair
 consume_tuple –k key –v value

 num=${#value[@]}
 for i in $(seq 0 $(($num-1))) ; do
 sum=$(($sum + ${value[$i]}))
 done

 # new environment variable
 if (($_ASPECT_NUM_HASHED_KEYS > 1))
 then
 emit_tuple –k “0” –v $sum
 else
 echo $sum
 fi
}

new cycle and key-value aggregation syntax
cat f.dat | part | (++ 2 sum on keys)

Figure 1. Parallel summation BASH script.
In the script the part function is used to partition the input data
stream into N buckets, emitting key-value pairs for each datum
with the key identifying the bucket to which it belongs. The key-
value pairs generated by the part function are then piped into a

cycle, iterating twice around the sum function. The first iteration
performs N parallel partial sums for each of the buckets. The sum
function then advertises their partial sums in key-value pairs with
a common key “0”. These partial sum key-value pairs are then
aggregated and piped into the final sum task in the second
iteration. This final sum then performs the global summation
over the intermediate partial sums and prints the final result.

Figure 2. Parallel summation data-flow graph

The corresponding data-flow graph describing the algorithm is
shown in Figure 2. The graph shows each process in the
computation as nodes, with arcs indicating data-flow between the
nodes.

3. SHELL PIPE EXTENSIONS
A Kahn Process Network (KPN) [5][6] is a data-flow graph where
nodes represent compute processes, and arcs represent unbounded
unidirectional FIFO channels with blocking read and non-
blocking write semantics. In this model, compute processes with
input data dependencies block on reading their input channels
until all input data arrives, before performing their computation
and writing their results to their outgoing channels. The compute
processes are assumed to not share memory, communicate only
through the channels, and have deterministic input-output
behavior, i.e. the same input history in a compute process will
always produce the same output history, irrespective of the
process execution timing.
Given these assumptions, a KPN is shown to be entirely defined
by the channel network, the compute processes, and the initial
data tokens used to boot-strap the computation. Importantly, the
computation in a KPN is provably deterministic [7], unaffected by
the execution order of the compute processes in the network. Thus
the results produced from a KPN are unaffected by the physical
processors available to execute it, i.e. executing the graph on 1
processor or 10000 processors will produce the same result.
Shell pipelines describe a linear data-flow graph that
approximates the properties of a KPN. The pipe operator, “|”,
represents the unbounded unidirectional FIFO queues connecting
processing stages that block until the required input data becomes
available. Current shell run-times ensure the stages in the
pipeline do not block on a write by always concurrently spawning

span

stride

Nodes

B

A

B

B

A

B

A

the process in the next stage. The concurrently spawned process
in the next stage is allowed to read the contents of the pipe,
ensuring that the pipe is drained.
In this paper we propose to extend the semantics of shell pipes to
incorporate the concept of forks, joins, cycles, and key-value
aggregation, allowing KPN-type graphs to be expressed. We also
implement a shell run-time that ensures the instantiated pipe
channels approximate the required unbound FIFO queue
semantics. The following sub-sections elaborate on the proposed
language extensions, and section 4 describes the design and
implementation of our run-time in detail

3.1 Spawning Parallel Tasks
To support our pipeline extensions, we introduce new semantics
to allow a shell function (or command) to be executed in parallel
using the syntax:

<A> on <n>[:<stride>][:] procs

where <A> is a shell function (or command) with optional input
arguments, and <n> is the number of tasks that needs to be
spawned, irrespective of the actual number of processors available
for the execution run.
Optional processor placements advice for the spawned tasks may
also be provided in the <stride> and terms. The
stride term restricts the placement of tasks to the specified
number of processor slots on each compute node, and the span
term spaces the execution compute nodes to only those separated
by the specified step value. This is illustrated in Figure 3.

Figure 3. Task placement: stride represents processor slots
per node, and span represents steps across nodes

For example, <n> instances of a shell function can be executed on
one processor of each of the available compute nodes with the
syntax:

<A> on <n>:1 procs

Or on alternatively spaced compute nodes:
<A> on <n>:1:2 procs

The default values for <stride> and are the number
of processor slots available on each compute node and one
respectively. As a syntactical sugaring, the keyword “all” can
be used for the <n> term to specify that the number of tasks to
spawn equals the number of processors available in the system.
As a further syntactical sugaring, the user can also specify the
equivalent of the first example (<n> tasks on one processor on
each compute node) with the syntax:

<A> on <n> nodes

Within this context, the keyword “all” can also be used for the
<n> term to specify that the number of tasks to spawn equals the
number of compute nodes available in the system.

3.2 Pipeline Fork
Pipeline fork is supported in our shell as shown in Figure 4. The
syntax declares that the output of <A> be piped into “n” parallel
instances of , where “n” can take any valid task spawning
specification as described in the previous section. Semantically,
given a network described by the output of function A connected
to the inputs of multiple instances of function B, denoted by B1 to
Bn (where A and B are deterministic), the result of the network is
always {B1(A(x)), …, Bn

Graphical
Representation

(A(x))}, where x denotes the input data
stream for A (if any).

Syntax A | B on n procs
Semantic Output = {B1(A(x)), …, Bn(A(x))}

Figure 4. Pipeline fork

3.3 Pipeline Join
Pipeline join is supported in our shell as shown in Figure 5. The
syntax declares that the output of “n” parallel instances of <A> be
piped into . Semantically, given a network described by the
outputs of multiple instances of function A, denoted by A1 to An,
connected to the input of function B (where A and B are
deterministic), the result of the network is always {B(A1(x1), …,
An(xn))} where x1 to xn denote input data streams (if any) for A1
to An

Graphical
Representation

 respectively.

Syntax A on n procs | B
Semantic Output = {B(A1(x1), …, An(xn))}

Figure 5. Pipeline join

3.4 Pipeline Cycles
Pipeline cycles are supported in our shell as shown in Figure 6.
The syntax declares a cyclic pipe, where the output of a pipeline
command is piped back to its input for each of its “n” iterations.
Semantically, given a network described by a deterministic
function F iterating “n” times, the result of the network is always
{Fn(…F1(x))} where x denotes the initial input stream into the
network, and Fi the ith instance of the function F.

A B

 B

 B

 DHT A

Graphical
Representation

Syntax (++ n A | B)
Semantic Output = {Fn(…F1(x))} where F(x)= B(A(x))

Figure 6. Pipeline cycle

3.5 Pipeline Key-Value Aggregation
Key-value aggregation is supported in our shell as shown in
Figure 7. The syntax declares that an instance of is spawned
for each key stored in an ephemeral distributed hash table (DHT),
assumed to be populated with key-value pairs emitted from the
previous stage of the pipeline, <A>. The key-value pairs are
emitted by <A> using the built-in command emit_tuple, while
the assigned key-value pairs can be read in with the built-in
command consume_tuple. The ephemeral DHT itself is
implemented in the shell run-time and is interposed transparently
between the key-value producer and consumer during the life-time
of the transaction.
Semantically, given a network described by the output of A
connected to the inputs of m instances of function B, denoted by
B1 to Bm, the result of the network is given by {B1(k1,v(k1)), …,
Bm(km,v(km))} ∀ ki ∈ key(A(x)), where key(A(x)) is the set of all
unique keys generated by A(x), m is the size of this set, v(ki) are
the values associated with key ki

Graphical
Representation

, and x is the input data stream
for A.
In our key-value aggregation network, the ephemeral DHT
process is a deterministic function because it always produces the
same output stream given the same input stream. For example,
the input key-value stream “(2 hi) (5 there) (2 mr) (8 wriggles)”
will always produce the output stream “(2 hi mr) (5 there) (8
wriggles)”. Consequently, the key-value aggregation construct
preserves the deterministic properties of our KPNs.

Syntax A | B on keys
Semantic Output = {Bi(ki,v(ki))} ∀ ki ∈ key(A(x))

Figure 7. Pipeline key-value aggregation

4. DESIGN AND IMPLEMENTATION
We have implemented our proposed pipeline extensions in
version 3.2 of Bourne Again SHell (BASH) on Linux kernel
2.6.x. BASH was chosen as an initial prototype platform because
of its rich set of language features compared to other shells.
These language features includes exception handling, dynamic
loadable built-ins, arrays, etc. However much of our design and
implementation choices are agonistic of the shell itself. Hence,

our extensions can similarly be implemented in other shells like
Tenex C Shell, Korn Shell, and Windows PowerShell.
Figure 8 shows a high-level overview of our software architecture.
In the architecture, software agents implement the parallel
execution capabilities of our pipeline extensions. The software
agents do this by spawning shell workers on processors in the
system, assigning compute tasks to them, and serializing results
from the completed tasks back to the shell. To determine what
processors are available to it, the shell also integrates with cluster
management systems like LSF, OpenPBS, Condor and Sun Grid
Engine, querying for available compute nodes through the
appropriate environment variables set by these resource managers.
Finally, to facilitate fast startup of shell workers, we provide a
process startup overlay to enable this. We will elucidate on all the
important aspects of this implementation in the following sub-
sections.

4.1 Software Agents
We use the concept of software agents heavily in our
implementation. In prior work, we have described the benefits of
a pluggable software agent framework that allows per-user
customizable run-time behavior to be implemented in the shell
[20][21]. We build on this prior work by similarly allowing
external software agents to be invoked to execute a shell function
or command when any of our extended execution syntax requiring
parallel execution is encountered.

For example, when a user types “foo_func on 10 procs”,
the shell executes “aspect-agent foo_func.sh”, where
foo_func.sh is a wrapper invoking the shell function
foo_func. An environment variable is also used to advise the
software agent that 10 instances of the function is requested. It is
then the responsibility of the software agent, aspect-agent, to
perform the parallel execution of the tasks, and to serialize the
results to stdout.

To ensure that function or command executes in the correct
environment, our shell also generates an environment context file
when the agent is invoked, and advertises this file through an
environment variable. This context file contains declarations for
all exported variables and function definitions in the current
execution context. The software agent can then use this
environment context file to ensure that all tasks have the correct
environment when executed.

Figure 8. High-level overview of architecture

4.1.1 Shell workers
Our run-time spawns shell workers for executing tasks in parallel
when required. These shell workers are simply instances of our
shell with the “-s” flag specified to allow commands to be issued
to them through their stdin. In our execution model, when a fork,
join or key-value aggregation is encountered, the run-time spawns
as many shell workers as possible: each worker assigned to a CPU
processor, up to the number of available CPU processors in the
cluster. The tasks involved in the fork, join or key-value
aggregation are then streamed through these shell workers to
enact the required semantics.

An illustration of the sequence of actions involved in starting shell
workers across processors in the system is shown in Figure 9.
The steps are as follows:

Step 1: A software agent is spawned to execute a command when
a fork, join or key-value aggregation is encountered in the shell.

Step 2: The agent forks a number of node IO multiplexer
processes. These node IO multiplexer processes are responsible
for routing messages to/from subsets of nodes used in the parallel
execution, and are used to avoid exhausting the per-process socket
descriptor limit.

Steps 3: The agent then invokes the process startup overlay to
execute a CPU IO multiplexer process on each node involved in
the parallel execution.

Step 4: The CPU IO multiplexer process starts shell workers for
each processor on the compute node, and is responsible for
routing messages to/from the shell worker started.

Step 5: The CPU IO multiplexer makes a callback to the node IO
multiplexer to establish a network connection between the
software agent and to each of the shell workers spawned.

The shell workers have their stdin and stdout duplicated (dup) to
sockets connected to the network path to the software agent. This
is the primary access mechanism in our infrastructure for the

agents to issue command workloads, and examine output results,
to/from the shell workers. In addition to the stdin and stdout, a
control channel is also created and duplicated to a socket
connected to the network path to the agent. The write and read
ends of the channel are advertised in the environment, and used
by the emit_tuple and consume_tuple built-in commands
for sending and receiving key-value pairs respectively.

4.1.2 Remote tasks and pipes
Figure 10 details the steps implemented by our software agent to
support the pipeline join construct. The steps for implementing
the pipeline fork construct are similar.

In our shell, when a pipeline command “A | B on N procs”
is executed, the run-time concurrently forks-execs the commands
“A” and “aspect-agent B”, setting up a pipe between the
output of “A” and the input of “aspect-agent B”. The
following steps then occur:

Figure 9. Software agent starting shell workers on compute nodes {0, 1, 4, 5} using the process startup overlay

Figure 10. Implementation of pipeline fork

Step 1: The software agent reads the output from “A” and stores
this in a temporary file, stdin_file. This approximates the
unbounded FIFO semantics in KPNs.

Step 2: The agent then composes a command file that sources the
environment context file, executes the command string “cat
stdin_file | B”, and removes itself on completion (i.e. “rm
–f $0”). As an optimization, for the case where N is greater
then the number of available processors in the cluster (M), this
command string is also wrapped in a loop with N/M iterations.
When this optimization is performed, a restart file is also created
for logging the last iteration executed to facilitate the replay of the
command file on node failure.

Step 3: Once the command file is composed, a command
dispatcher thread pushes execution requests for this command file
into FIFO queues associated with a set of command flusher
threads. In the agent, a command flusher thread is created for
each node IO multiplexer in the current execution, whose sole
purpose is to detect enqueued command requests and to send
them, in a round-robin order, to the shell workers. After all
command files are enqueued, the command dispatcher issues a
final “exit” command to all the shell workers.

Steps 4/5: Commands are streamed to the shell workers by the
flusher threads, and the output (stdin, stdout, and control) of the
workers routed back to an IO multiplexer thread in the software
agent. This IO multiplexer thread is responsible for serializing the
messages it receives and forwarding them to the stdin, stdout and
control descriptors in the BASH run-time. The IO multiplexer is
also responsible for detecting when shell workers exit, and signals
to the agent when all workers terminate.

Step 6: Before exiting, a replayer thread in the software agent
checks if all command files have successfully executed, and hence
removed. If command files exist, local shell workers are spawned,
one for each CPU processor available on the node, and the
orphaned command files re-dispatched to these local shell
workers. The software agent terminates after all the orphaned
command files complete successfully.

Figure 11. Implementation of key-value aggregation

4.1.3 Key-value aggregation and distributed hash-
tables
Figure 11 shows the steps taken by our agent in implementing
key-value aggregation. When the pipeline command “A | B on
keys” is executed, the run-time concurrently forks-execs the
commands “A” and “aspect-agent B”, setting up a pipe
between the output of “A”, and the input of “aspect-agent
B”. In addition, a pipe is also created for a control channel, with
the read-write ends advertised in environment variables for use by
the built-in commands emit_tuple and consume_tuple. The
following steps then occur:

Step 1: Command “A” advertises key-value pairs through the
control channel with the emit_tuple command, and the
software agent reads the advertised key-value pairs in a key
dispatcher thread.

Step 2: The key dispatcher forwards the key-value pair to a
compute node determined by hash(key)%M, where hash is a hash
function that generates a 32-bit integer for a given key string, and
M is the number of compute nodes in the system. The key-value
pair is then stored in an associative array data structure on the
designated compute node. This associative array is implemented
as a hash table in memory, and offloaded to a GDBM file-based
hash table if the table size exceeds an environment configurable
threshold.

Step 3: When all key-value pairs have been dispatched, the key
dispatcher sends a special EOF header to the compute nodes
participating in the distributed hash table. Each compute node
then generates a binary file, tuple_file, for each key in its
associative array with its aggregated values, and composes a
command file for execution by workers spawned on each
processor on the local node. This command file is constructed to
source its environment context file, execute the command string
“emit_tuple –f tuple_file | B”, and remove itself on
completion (i.e. “rm –f $0”). The –f option flag used with
emit_tuple simply tells the command to emit the key-value
data stored in the specified file. As an optimization, for the case
where the number of key aggregated (N) on the local node is
greater then the number of available processors on the node (M),
this command string is also wrapped in a loop with N/M
iterations. When this optimization is performed, a restart file is
also created for logging the last iteration executed to facilitate the
replay of the command file on node failure.

Step 4: Finally, the output (stdin, stdout, and control) of the
executed commands are routed back to an IO multiplexer thread
in the software agent. This IO multiplexer thread is responsible
for serializing the messages it receives and forwarding them back
to the stdin, stdout and control descriptors in the BASH run-time.

4.2 Pipeline Cycle Implementation
The implementation of the pipeline cycles construct in BASH is
straightforward, involving less than 100 lines of code change. In
our implementation, the parser was updated to recognize the
pipeline cycle syntax and to set a flag in the shell’s command
pipeline data structure. The run-time then checks for this flag
when executing a pipeline command, wrapping a loop around the
command if the flag is detected. The loop is responsible for
copying the output of the last command into a file, and piping the
content of that file back to the first command on subsequent

iterations. This is achieved by creating two additional virtual
pipes, and spawning reader and writer threads responsible for
reading the output at the end of the pipeline into a file, and
writing the content of the file back to the beginning of the pipeline
respectively.

4.3 Process Startup Overlay
When a user starts our shell as a login environment, or runs a
script with our shell, the shell run-time boot-straps a process
startup overlay across each of the compute nodes available to the
user. To integrate with cluster resource managers, the list of
available nodes to the shell run-time can be set in a batch job
script to the nodes allocated by a resource manager for the
particular job run. Our startup overlay then serves two purposes:
it enables fast startup of shell workers (and the
functions/commands they execute), and it endeavors to maintain
continuous operation of the script in the presence of compute
node failures.

At a high-level, our startup overlay provides a two-level routing
hierarchy for forwarding commands between nodes in our
network. It is organized as a set of fully connected sectors; with
each sector containing a set of fully-connected proxies each
representing a physical compute node. The connections between
sectors are routed through a single proxy in each sector, called the
sector head.

To establish this routing hierarchy, each compute node is assigned
a monotonic increasing 32-bit node ID, of which the first X bits
designate its proxy ID (2-bits are used in Figure 9 for illustration
and 8-bits are used in the actual implementation), and the
remaining bits designate its sector ID. In our overlay, starting a
command within the same sector incurs one routing step. While
starting a command between sectors incurs at most three routing
steps: the command is forwarded through the local sector head to
its peer sector head, before finally arriving at the intended
destination proxy.

Our startup overlay informs the software agents in our framework
of available nodes in a master_node file, maintained by an
elected primary sector head and exported in an environment
variable. Fault-tolerance is provided by the startup overlay
because the sector heads continually monitors the health of the
proxy connections within their own sector and the connection
between sectors. If a sector head detects a node failure, it updates
the primary sector head with this information. The primary sector
head is then responsible for updating the master_node file to
exclude the faulty nodes. Subsequent invocations of our software
agent will then use this updated master_node file, containing
only nodes with which the overlay has routable connections.

5. Experimental Evaluation
We examine the performance of our system in a number of ways.
First, we use micro benchmarks to examine 1) the effectiveness of
our process startup overlay, and 2) the performance of executing
millions of task and key-value aggregations. Second, we look at
the performance of the system in implementing a solution for the
TeraSort benchmark [29].

In this section, all benchmarks were run on a production scientific
compute cluster managed by the University of Texas at Austin.
The cluster consists of 4000 compute nodes, each composed of

four AMD 64-bit Barcelona Quad-Core processors (16-processor
cores), with 32 GB of memory, and 300 MB of disk storage each.
All compute nodes are interconnected by a high-speed InfiniBand
switch, and a Lustre parallel file system is available for global file
sharing.

The cluster is a multi-user system, shared by a large community of
computational science researchers. Therefore access to the cluster
is space and time shared through a batch queuing system provided
through the SGE cluster resource manager.

Figure 12. Startup performance of a simple command with

the overlay and the default SSH mechanism

5.1 Command Startup Performance
The default remote command startup mechanism on the cluster is
the SSH command. We therefore compare the performance of
executing a simple command in parallel on processors in the
cluster using the default mechanism and our startup overlay.
Figure 12 shows the times to complete the execution of the
hostname commands on 32 to 4096 processors with the two
mechanisms. For the startup overlay case, we ran the command
“hostname on all procs” in a shell script we submitted as
a batch job to the cluster. For the experiment we record up to six
runs for each benchmark, as the variance in the command startup
performance using SSH was observed to be large. A linear
interpolated fit of the data was then used to observe the trend in
the startup performance of both mechanisms.

Our results show that the performance of executing commands in
parallel in our overlay is much better than using SSH. This is
especially evident for large processor runs. At 4096 processors,
we see that the command execution performance is approximately
270% worse using SSH than when our overlay is used.

The SSH command is commonly used as the default remote
execution mechanism for many commodity clusters. For example
all the parallel clusters at the NSF supercomputing centers use
SSH for this purpose. However, our process startup overlay uses
the SSH mechanism only to boot-strap across the participating
compute nodes at the beginning of job execution. After the
overlay is established, all remote commands in our system incur
the benefit of the exhibited low overhead.

5.2 Task Execution Performance
In this experiment, we observe the performance of a pipeline join
(A on n procs | B), involving 108 tasks, and key-value
aggregation (A | B on keys), involving 108 unique key-value

pairs. In this syntactic benchmark, we assume that task A in the
pipeline join, and task B in the key-value aggregation consume
0.1 seconds of work, emulated by the command “sleep 0.1s”.

Figure 13 shows the execution times of the respective experiments
for runs involving 512 to 4096 processors on the compute cluster.
We observe that the performance is approximately similar, and
improves as the processor set size increases.

(a)

(b)

Figure 13. Performance of (a) pipeline join and (b) key-value
aggregation for 100 million tasks

We also observed the key distribution of our ephemeral DHT in
the above key-value aggregation experiment. Figure 14 shows the
distribution of reduce tasks across the 256 compute nodes (for the
4096 processor experiment) associated with the 100 million
generated keys. We calculate the mean (X) and standard
deviation (σ) for the key distribution to be 390625 and 664
respectively, indicating a good uniform distribution (low
variance) across the compute nodes in the DHT of our system.
The results are unsurprising but important in verifying our
implementation.

Figure 14. Distribution of reduce tasks over compute nodes

5.3 TeraSort Benchmark
We also examine a solution for the TeraSort benchmark [29]
using our shell. The task is to sort 100-byte data records
generated from an unmodified gensort executable.

Our solution script consists of three phases. First, we spawn the
data generator program in parallel on each processor socket (four
instances on each compute node). A LD_PRELOAD shared object
then transparently partitions the data generated from each
gensort instance by intercepting calls to fwrite(), and
permitting writes to local disk if the first two bytes (16-bits) of the
record falls within the range

 +

∗∗
N

T
N
T 12,2 1616

where T is the task identifier and N is the total tasks involved in
the computation.

Second, we spawn a task on each processor socket to perform the
actual sort on each of these range partitioned files on local disk.
Third, we spawn a task on each compute node to copy the sorted
data from the local disk into the global file system. Thus, our
solution represents a version of parallel bucket sort1

.

Figure 15. Sorting rate and speedup shown with increasing
number of processors. Data size = 6e1010

Figure 15
 bytes

 shows the sorting rate, and the speedup, achieved for
increasing processor set sizes involved in the computation. For
each processor set size, N, we sort a total of N*6e107

5.4 Other Applications

 bytes. The
solution with our shell shows close to linear speedup for
increasing processor set sizes. Importantly, our shell enabled us
to derive a parallel solution for this problem on a production
scientific cluster within a few hours of scripting and testing effort.

We have also implemented a number of additional applications
using our shell on the compute clusters managed by the Texas
Advanced Computing Center. These applications include word-
count, parallel grep, matrix-multiply and K-means clustering.
More information about these applications, including their source
code, can be found on the project web site [31].

1 The source code for our implementation can be found on the

project web site[31].

6. RELATED WORK
The important significance of coordination languages have been
extensively described in the literature [9][10]. A coordination
language project that closely relates to our work is Ptolemy
[7][8][11]. The project is developing a suite of languages, called
domains, for the design and simulation of concurrent, real-time,
embedded systems. In particular, the PN (Process Network)
domain most closely resembles our work as it can also be used to
implement KPN graphs. However, the project differs from our
work in their focus on real-time embedded systems, while we
focus on large scale distributed computation. Also, their
programming environment is primarily the graphical program
editor, Vergil, while we use commodity operating system shells as
the program composition framework.

The pipe concept has also been widely adopted by many other
projects. Karges et. al. [34] described an early design of a parallel
pipe implementation, but their work only touches on the fork
semantics introduced in this paper. CMS pipelines [12], in
VM/ESA and z/VM, allow the creation of multiple input and
output channels in a pipeline command. A Python version of
CMS pipelines is also available [13], providing this feature to
other operating systems. However, CMS pipelines are different
from our proposal because they do not support cycles, parallel
processing, or higher level concurrency patterns like MapReduce.

Object pipes have recently been introduced [14], most notably in
Windows PowerShell [15]. Our implementation in BASH does
not yet support object streams. However, our proposed
extensions do not preclude their introduction into shells that
support this concept in the future.

Web products like Yahoo!Pipes [16] have also been introduced
recently. The product allows web content to be filtered and
modified by connecting RSS feeds through pipe-like networks.
However the concept does not support parallel computation.

Systems for coordinating MapReduce programs are also closely
related to our work. Phoenix [19] provides a low level C/C++
API library for implementing MapReduce on shared memory
architectures. In addition, open source projects like Apache
Hadoop [22] allow MapReduce to be implemented through a Java
API. Our approach implements MapReduce at the coordination
language layer, allowing arbitrary programs, including legacy
programs, to leverage MapReduce concurrency patterns, on
shared-memory and distributed memory architectures. Most
importantly, compared to these other systems, we provide a more
general computational model in KPN for implementing a wider
range of algorithms.

Dryad [26], and its associated programming interfaces [25][28], is
a general purpose distributed execution engine for direct acyclic
(DAG) data-flow computation, and hence is very closely related to
our system. However, our work differs with Dryad in three
important respects. First, Dryad only supports acyclic graphs,
while our system supports graphs with cycles. Second, Dyrad
does not integrate with commonly used cluster job managers like
OpenPBS, SGE, etc. (Dryad is intended to be the cluster job
manager itself), while our system is designed for use on clusters
using commodity job managers. Third, Dyrad has not yet been
integrated with commodity operating system shells like BASH,
which our work specifically addresses.

Other proposed systems that also use the concept of pipes for
parallel computation include pipelets [27], but they use the XML
Pipeline Definition Language (XPDL) for describing the
relationship between components in a pipeline.

Finally, our work is also related to functional and declarative
languages for parallel processing like Sawzall [23], Pig Latin [24]
SCOPE [28], and Orc [33]. Our work differs from these because
we do not propose a new language interface but instead extend an
existing commodity shell scripting interface for parallel
processing with pipes.

7. CONCLUSIONS AND FUTURE WORK
We have proposed semantic extensions to the concept of shell
pipes, verified the utility of our proposal by implementing a
prototype in BASH, and composed large applications using the
system on a production distributed-memory compute cluster. In
the process, we are learning some interesting lessons.

First, we were made very aware that debugging tools are critically
needed for shells in a parallel computing environment. There are
currently few tools which can be used to investigate anomalous
behaviors in our pipelines. When things go wrong, as they
sometimes do, we had to examine the output of each individual
stage manually to debug the problem. Therefore we wish to
investigate debugging tools in the future, possibly extending the
built-in BASH debugger (bashdb) for our purpose.

Second, we were reminded that the actual performance of a
parallel shell script is determined by many additional run-time
factors, such as process startup overheads, file system bottlenecks,
L1/L2 memory caching effects, etc. We are interested in
investigating simulators that can be run on a workstation to help
us predict the performance of our parallelization choices. This
will greatly aid users in composing first-time right scripts,
preventing unforeseen performance surprises when the scripts are
actually run on production parallel computers.

Third, we are still unclear how to proceed with the integration of
our pipeline extensions with named pipes (mkfifo). Future
releases of our BASH shell may incorporate this support, but as
yet, it remains an open question.

8. REFERENCES
[1] Dennis. M. Ritchie, “The Evolution of the Unix Time-

Sharing System”, AT&T Laboratories Technical Journal,
vol. 6(2) (Oct. 1984), 1577-1593, Oct. 1984.

[2] R. P. Lai, “In Praise of Scripting: Real Programming
Pragmatism”, IEEE Computer, 22-26, July 2008.

[3] L. Prechelt, “An Empirical Comparison of Seven
Programming Languages”, IEEE Computer, vol. 33(10), 23-
29, Oct. 2000.

[4] J. K. Ousterhout, “Scripting: Higher Level Programming for
the 21st

[5] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming”, Information Processing, vol. 4, 471-475,
1974.

 Century”, IEEE Computer, 23-30, Mar. 1998.

[6] G. Kahn and D. B. MacQueen, “Coroutines and Networks of
Parallel Processes”, Information Processing, vol. 7, 993-998,
1997.

[7] T. M. Parks, Bounded Scheduling of Process Networks, PhD
Thesis, University of California at Berkeley, 1995.

[8] Edward Lee, “Dataflow Process Networks”, Proceedings of
IEEE, vol. 83(5) (May 1995), 773-801, 1995.

[9] D. Gelernter and N. Carriero, “Coordination Languages and
their Significance”, Comm. ACM, 35(2), 97-107, 1992.

[10] G. Papadopoulos, and F. Arbab, Coordination Models and
Languages, Advances in Computers – The Engineering of
Large Systems, vol. 46, Academic Press, 329-400, 1998.

[11] Edward Lee et.al. The Ptolemy Project. (online)
http://ptolemy.eecs.berkeley.edu/

[12] J. P. Hartmann. 2007. CMS Pipelines Explained. (online)
http://vm.marist.edu/~pipeline/pipjarg.pdf

[13] B. Gailer. Python-pipelines: A Python Implementation of
Hartmann (CMS) Pipelines. (online)
http://code.google.com/p/python-pipelines/

[14] S. Macdonald, “Rethinking the Pipeline as Object-Oriented
States with Transformations”, Proc. 9th

[15] D. Jones, “Windows PowerShell: Rethinking the Pipeline”,
Microsoft TechNet Magazine, July 2007.

 International
Workshop on High-Level Programming Models and
Supportive Environments (HIPS’2004), 12-21, 2004.

[16] Yahoo!Pipes. (online) http://pipes.yahoo.com/pipes/
[17] J. Dean, and S. Ghemawat, “MapReduce: Simplified Data

Processing for Large Clusters”, in Proc. of 6th

[18] H. Chih Yang, A. Dasdan, R-L. Hsiao, and D. S. Parker,
“Map-Reduce-Merge: Simplified Relational Data Processing
on Large Clusters”, in Proc. of SIGMOD International Conf.
on Management of Data, 2007.

 Symposium on
Operating System Design and Implementation (OSDI’04),
(2004), 137-150, 2004.

[19] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C.
Kozyrakis, “Evaluating MapReduce for Multi-core and
Multiprocessor Systems”, Proc. of 13th

[20] E. Walker, and T. Minyard, and J. Boisseau, “GridShell: A
Login Shell for Orchestrating and Coordinating Applications
in a Grid Enabled Environment”, Proc. of International
Conference of Computing, Communications and Control
Technologies, 182-187, Austin, TX, August 2004.

 International
Symposium of High-Performance Computer Architecture
(HPCA), Feb. 2007.

[21] ApectShell: Aspect-oriented scripting shells. (online)
http://www.tacc.utexas.edu/~ewalker/gridshell/GridShell.htm

[22] Apache Hadoop. (online) http://hadoop.apache.org/core/
[23] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan,

“Interpreting the Data: Parallel Analysis with Sawzall”,
Scientific Programming 13(4), 2005.

[24] C. Olston, B. Reed, U. Srivastave, R. Kumar, and A.
Tomkins, “Pig Latin: A not so Foreign Language for Data
Processing”, in Proc. of International Conf. on Management
of Data (Industrial Track), 2008.

[25] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P.
Gunda, and J. Currey, “DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-
Level Language”, in Proc. of 8th

[26] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
“Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks”, in Proc. of European Conference on
Computer Systems (EuroSys), 2007.

 Symposium on Operating
System Design and Implementation (OSDI’08), 2008.

[27] J. Carnahan, and D. DeCoste, “Pipelets: A Framework for
Distributed Computation”, W4: Learning in Web Search,
2005.

[28] R. Chaiken, B. Jenkins, P-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou, “SCOPE: Easy and Efficient Parallel
Processing of Massive Data Sets”, in Proc. of International
Conference of Very Large Data Bases (VLDB), 2008.

[29] TeraSort Benchmark. (online)
http://www.hpl.hp.com/hosted/sortbenchmark/

[30] Project Gutenberg. (online) http://www.gutenberg.org
[31] Dataflow Graphs in System Shells. (online)

http://sites.google.com/site/ewalker544/dataflowshell
[32] TOP500 Supercomputing Sites (online),

http://www.top500.org.
[33] David Kitchin, Adrian Quark, William Cook, and Jayadev

Misra, “The Orc Programming Language”, in Proc.
FMOODS/FORTE, Springer Verlag, LNCS 5522, 1—25,
2009

[34] J. Karges, O. Ritter, and S. Suhai, “Design and
Implementation of a Parallel Pipe”, Operating System
Reviews, 31(2), 64-94, 1997.

http://vm.marist.edu/~pipeline/pipjarg.pdf�
http://code.google.com/p/python-pipelines/�
http://www.tacc.utexas.edu/~ewalker/gridshell/GridShell.htm�
http://hadoop.apache.org/core/�
http://www.hpl.hp.com/hosted/sortbenchmark/�
http://www.gutenberg.org/�
http://sites.google.com/site/ewalker544/dataflowshell�
http://www.top500.org/�

	INTRODUCTION
	A TRIVAL EXAMPLE
	SHELL PIPE EXTENSIONS
	Spawning Parallel Tasks
	Pipeline Fork
	Pipeline Join
	Pipeline Cycles
	Pipeline Key-Value Aggregation

	DESIGN AND IMPLEMENTATION
	Software Agents
	Shell workers
	Remote tasks and pipes
	Key-value aggregation and distributed hash-tables

	Pipeline Cycle Implementation
	Process Startup Overlay

	Experimental Evaluation
	Command Startup Performance
	Task Execution Performance
	TeraSort Benchmark
	Other Applications

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

