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ABSTRACT 
In this paper we extend the concept of shell pipes to incorporate 
forks, joins, cycles, and key-value aggregation.  These extensions 
enable the implementation of a class of data-flow computation 
with strong deterministic properties, and provide a simple yet 
powerful coordination layer for leveraging multi-language and 
legacy components for large-scale parallel computation.  
Concretely, this paper describes the design and implementation of 
the language extensions in Bourne Again SHell (BASH), and 
examines the performance of the system using micro and macro 
benchmarks. The implemented system is shown to scale to 
thousands of processors, enabling high throughput performance 
for millions of processing tasks on large commodity compute 
clusters.   

Categories and Subject Descriptors 
D.3.2 [Programming Languages]: Language Classifications –
data-flow languages.  

General Terms 
Experimentation, Languages. 

Keywords 
Data-flow processing, parallel processing, coordination 
languages. 

1. INTRODUCTION 
“One of the most widely admired contributions of Unix to the 
culture of operating systems and command languages is the pipe.” 
– Dennis M. Ritchie [1] 

Shell pipes are a method for composing a group of applications 
into one with higher-level functionality.  The concept was 
invented over 30 years ago in the original Unix shell [1], and 
since then, scripting with pipes has become an essential tool for 

many system administrators and software developers.  The 
popularity of shell pipes can be explained by their ability to 
recursively compose: allowing for the creation of expendable 
software toolkits of increasing sophistication from simpler 
program components, which may themselves be composed from 
pipes.  Indeed, command pipelines in the earliest Unix 
installations may arguably be the precursors of all modern 
workflows.   

To date, the success of pipes has resulted in the concept being 
ported to a wide variety of operating systems, e.g. DOS, Windows 
NT, Mach, and others.  The concept has also motivated 
implementations that have gone beyond the traditional shell 
interface (see section 6 for related work).  However, despite its 
popularity, there is no prior art that has attempted to expand the 
syntax and semantics of Unix pipes for parallel coordination in 
the shell.   With the proliferation of large commodity compute 
clusters in academia and industry, we believe it is timely to 
expand the concept of pipes for parallel processing.  Furthermore, 
because the shell remains the default login environment to the 
operating system, we believe it provides an ideal coordination 
layer for composing multi-language software programs into higher 
level parallel constructs, idioms and applications -- extrapolating 
the original Unix idea of expandable toolkits for large distributed-
memory compute clusters.  Certainly, scripting in general is still 
an important counterpart to stronger typed system languages [2] 
because it remains an effective mechanism for rapidly automating 
common computing tasks for the non-expert and expert 
information technologist alike [3][4]. 

In this paper, we make three specific contributions.  First, we 
extend the concept of pipes to incorporate forks, joins, and cycles, 
allowing the creation of data-flow graphs with similar properties 
to Kahn Process Network (KPN) in the operating system shell.  
KPNs are data-flow graphs that have strong deterministic 
properties, allowing for correct parallel programs to be defined 
without explicit locks or synchronization [5][6][8].  Second, we 
introduce a simple shell language extension that incorporates a 
higher-level concurrency pattern for key-value aggregation, 
allowing MapReduce [17][18] type algorithms to be constructed 
at the shell command line. This extension allows administrators 
and developers to easily construct key-value algorithms for large-
scale analysis of unstructured data, similar to that proposed by 
other well-known systems like Hadoop [22] and Dryad [25][26], 
while benefitting from the deterministic properties provided by 
KPNs.  Third, we describe an expandable implementation 
framework in Bourne Again SHell (BASH) that allows software 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
WORKS’09, Nov. 16, 2009, Portland, OR, USA. 
Copyright 2009 ACM 978-1-60558-717-2/09/11…$10.00. 
 



agents to be plugged into the shell to modify its run-time 
behavior.  This agent framework provides a flexible and 
extensible mechanism for experimenting with ever more 
sophisticated and robust run-time solutions for our proposed 
extensions in the shell.   In particular, we describe our agent 
implementation which is shown to scale to thousands of 
processors, enabling high throughput performance for millions of 
processing tasks.   

The paper is organized as follows.  Section 2 introduces our 
proposed shell extensions by illustrating a simple parallel 
summation script.   Section 3 then describes our pipeline semantic 
extensions in detail: forks, joins, cycles and key-value 
aggregation.  Section 4 describes our design and implementation 
in BASH, and section 5 describes our experimental evaluation of 
the constructed system.  Section 6 describes related work, and 
section 7 concludes our paper with a brief discussion of future 
directions. 

2. A TRIVAL EXAMPLE 
This section describes a simple parallel summation script in 
BASH using some of our proposed extensions. We first assume 
that a user has a list of numbers in a file called “f.dat”.  The 
user can compose a script to calculate the sum of the content of 
the file in parallel with our shell as shown in Figure 1. 

 
function part() 
{ 
  while read i; do 
    key=$(($i % $N)) 
    # new built-in: emits key-value pair 
    emit_tuple –k $key –v $i   
  done 
} 
 
function sum() 
{ 
  # new built-in: reads key-value pair 
  consume_tuple –k key –v value 
 
  num=${#value[@]} 
  for i in $(seq 0 $(($num-1))) ; do 
    sum=$(($sum + ${value[$i]})) 
  done 
 
  # new environment variable 
  if (($_ASPECT_NUM_HASHED_KEYS > 1)) 
  then 
    emit_tuple –k “0” –v $sum 
  else 
    echo $sum 
  fi 
} 
 
# new cycle and key-value aggregation syntax 
cat f.dat | part | (++ 2 sum on keys) 
 

Figure 1.  Parallel summation BASH script. 
In the script the part function is used to partition the input data 
stream into N buckets, emitting key-value pairs for each datum 
with the key identifying the bucket to which it belongs.  The key-
value pairs generated by the part function are then piped into a 

cycle, iterating twice around the sum function.   The first iteration 
performs N parallel partial sums for each of the buckets.  The sum 
function then advertises their partial sums in key-value pairs with 
a common key “0”.  These partial sum key-value pairs are then 
aggregated and piped into the final sum task in the second 
iteration.  This final sum then performs the global summation 
over the intermediate partial sums and prints the final result. 

 
Figure 2.  Parallel summation data-flow graph 

The corresponding data-flow graph describing the algorithm is 
shown in Figure 2.  The graph shows each process in the 
computation as nodes, with arcs indicating data-flow between the 
nodes. 

3. SHELL PIPE EXTENSIONS 
A Kahn Process Network (KPN) [5][6] is a data-flow graph where 
nodes represent compute processes, and arcs represent unbounded 
unidirectional FIFO channels with blocking read and non-
blocking write semantics.  In this model, compute processes with 
input data dependencies block on reading their input channels 
until all input data arrives, before performing their computation 
and writing their results to their outgoing channels.  The compute 
processes are assumed to not share memory, communicate only 
through the channels, and have deterministic input-output 
behavior, i.e. the same input history in a compute process will 
always produce the same output history, irrespective of the 
process execution timing.   
Given these assumptions, a KPN is shown to be entirely defined 
by the channel network, the compute processes, and the initial 
data tokens used to boot-strap the computation.  Importantly, the 
computation in a KPN is provably deterministic [7], unaffected by 
the execution order of the compute processes in the network. Thus 
the results produced from a KPN are unaffected by the physical 
processors available to execute it, i.e. executing the graph on 1 
processor or 10000 processors will produce the same result.     
Shell pipelines describe a linear data-flow graph that 
approximates the properties of a KPN. The pipe operator, “|”, 
represents the unbounded unidirectional FIFO queues connecting 
processing stages that block until the required input data becomes 
available.  Current shell run-times ensure the stages in the 
pipeline do not block on a write by always concurrently spawning 
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the process in the next stage.  The concurrently spawned process 
in the next stage is allowed to read the contents of the pipe, 
ensuring that the pipe is drained.   
In this paper we propose to extend the semantics of shell pipes to 
incorporate the concept of forks, joins, cycles, and key-value 
aggregation, allowing KPN-type graphs to be expressed.  We also 
implement a shell run-time that ensures the instantiated pipe 
channels approximate the required unbound FIFO queue 
semantics.  The following sub-sections elaborate on the proposed 
language extensions, and section 4 describes the design and 
implementation of our run-time in detail 

3.1 Spawning Parallel Tasks 
To support our pipeline extensions, we introduce new semantics 
to allow a shell function (or command) to be executed in parallel 
using the syntax: 

<A> on <n>[:<stride>][:<span>] procs 

where <A> is a shell function (or command) with optional input 
arguments, and <n> is the number of tasks that needs to be 
spawned, irrespective of the actual number of processors available 
for the execution run.   
Optional processor placements advice for the spawned tasks may 
also be provided in the <stride> and <span> terms.  The 
stride term restricts the placement of tasks to the specified 
number of processor slots on each compute node, and the span 
term spaces the execution compute nodes to only those separated 
by the specified step value.  This is illustrated in Figure 3. 
 

Figure 3.  Task placement: stride represents processor slots 
per node, and span represents steps across nodes 

For example, <n> instances of a shell function can be executed on 
one processor of each of the available compute nodes with the 
syntax: 

<A> on <n>:1 procs 

Or on alternatively spaced compute nodes: 
<A> on <n>:1:2 procs 

The default values for <stride> and <span> are the number 
of processor slots available on each compute node and one 
respectively.  As a syntactical sugaring, the keyword “all” can 
be used for the <n> term to specify that the number of tasks to 
spawn equals the number of processors available in the system.  
As a further syntactical sugaring, the user can also specify the 
equivalent of the first example (<n> tasks on one processor on 
each compute node) with the syntax: 

<A> on <n> nodes 

Within this context, the keyword “all” can also be used for the 
<n> term to specify that the number of tasks to spawn equals the 
number of compute nodes available in the system. 

3.2 Pipeline Fork 
Pipeline fork is supported in our shell as shown in Figure 4.  The 
syntax declares that the output of <A> be piped into “n” parallel 
instances of <B>, where “n” can take any valid task spawning 
specification as described in the previous section.  Semantically, 
given a network described by the output of function A connected 
to the inputs of multiple instances of function B, denoted by B1 to 
Bn (where A and B are deterministic), the result of the network is 
always {B1(A(x)), …, Bn
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(A(x))}, where x denotes the input data 
stream for A (if any). 

 

Syntax A | B on n procs 
Semantic Output = {B1(A(x)), …, Bn(A(x))} 

Figure 4.  Pipeline fork 

3.3 Pipeline Join 
Pipeline join is supported in our shell as shown in Figure 5.  The 
syntax declares that the output of “n” parallel instances of <A> be 
piped into <B>.  Semantically, given a network described by the 
outputs of multiple instances of function A, denoted by A1 to An, 
connected to the input of function B (where A and B are 
deterministic), the result of the network is always {B(A1(x1), …, 
An(xn))} where x1 to xn denote input data streams (if any) for A1 
to An
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 respectively. 

 

Syntax A on n procs | B 
Semantic Output = {B(A1(x1), …, An(xn))} 

Figure 5.  Pipeline join 

3.4 Pipeline Cycles 
Pipeline cycles are supported in our shell as shown in Figure 6.  
The syntax declares a cyclic pipe, where the output of a pipeline 
command is piped back to its input for each of its “n” iterations.  
Semantically, given a network described by a deterministic 
function F iterating “n” times, the result of the network is always 
{Fn(…F1(x))} where x denotes the initial input stream into the 
network, and Fi the ith instance of the function F. 
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Syntax (++ n A | B) 
Semantic Output = {Fn(…F1(x))} where F(x)= B(A(x)) 

Figure 6.  Pipeline cycle 

3.5 Pipeline Key-Value Aggregation 
Key-value aggregation is supported in our shell as shown in 
Figure 7.  The syntax declares that an instance of <B> is spawned 
for each key stored in an ephemeral distributed hash table (DHT), 
assumed to be populated with key-value pairs emitted from the 
previous stage of the pipeline, <A>.  The key-value pairs are 
emitted by <A> using the built-in command emit_tuple, while 
the assigned key-value pairs can be read in <B> with the built-in 
command consume_tuple.  The ephemeral DHT itself is 
implemented in the shell run-time and is interposed transparently 
between the key-value producer and consumer during the life-time 
of the transaction.   
Semantically, given a network described by the output of A 
connected to the inputs of m instances of function B, denoted by 
B1 to Bm, the result of the network is given by {B1(k1,v(k1)), …, 
Bm(km,v(km))} ∀ ki ∈ key(A(x)), where key(A(x)) is the set of all 
unique keys generated by A(x), m is the size of this set, v(ki) are 
the values associated with key ki
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, and x is the input data stream 
for A.  
In our key-value aggregation network, the ephemeral DHT 
process is a deterministic function because it always produces the 
same output stream given the same input stream.  For example, 
the input key-value stream “(2 hi) (5 there) (2 mr) (8 wriggles)” 
will always produce the output stream “(2 hi mr) (5 there) (8 
wriggles)”.  Consequently, the key-value aggregation construct 
preserves the deterministic properties of our KPNs. 

 

Syntax A | B on keys 
Semantic Output = {Bi(ki,v(ki))} ∀ ki ∈ key(A(x)) 

Figure 7.  Pipeline key-value aggregation 

4. DESIGN AND IMPLEMENTATION 
We have implemented our proposed pipeline extensions in 
version 3.2 of Bourne Again SHell (BASH) on Linux kernel 
2.6.x.  BASH was chosen as an initial prototype platform because 
of its rich set of language features compared to other shells.  
These language features includes exception handling, dynamic 
loadable built-ins, arrays, etc.  However much of our design and 
implementation choices are agonistic of the shell itself.  Hence, 

our extensions can similarly be implemented in other shells like 
Tenex C Shell, Korn Shell, and Windows PowerShell.  
Figure 8 shows a high-level overview of our software architecture.  
In the architecture, software agents implement the parallel 
execution capabilities of our pipeline extensions.  The software 
agents do this by spawning shell workers on processors in the 
system, assigning compute tasks to them, and serializing results 
from the completed tasks back to the shell.  To determine what 
processors are available to it, the shell also integrates with cluster 
management systems like LSF, OpenPBS, Condor and Sun Grid 
Engine, querying for available compute nodes through the 
appropriate environment variables set by these resource managers.  
Finally, to facilitate fast startup of shell workers, we provide a 
process startup overlay to enable this.  We will elucidate on all the 
important aspects of this implementation in the following sub-
sections. 

 

4.1 Software Agents 
We use the concept of software agents heavily in our 
implementation.  In prior work, we have described the benefits of 
a pluggable software agent framework that allows per-user 
customizable run-time behavior to be implemented in the shell 
[20][21].  We build on this prior work by similarly allowing 
external software agents to be invoked to execute a shell function 
or command when any of our extended execution syntax requiring 
parallel execution is encountered.      

For example, when a user types “foo_func on 10 procs”, 
the shell executes “aspect-agent foo_func.sh”, where 
foo_func.sh is a wrapper invoking the shell function 
foo_func.  An environment variable is also used to advise the 
software agent that 10 instances of the function is requested.  It is 
then the responsibility of the software agent, aspect-agent, to 
perform the parallel execution of the tasks, and to serialize the 
results to stdout.     

To ensure that function or command executes in the correct 
environment, our shell also generates an environment context file 
when the agent is invoked, and advertises this file through an 
environment variable.  This context file contains declarations for 
all exported variables and function definitions in the current 
execution context.   The software agent can then use this 
environment context file to ensure that all tasks have the correct 
environment when executed. 

Figure 8.  High-level overview of architecture 



 

4.1.1 Shell workers 
Our run-time spawns shell workers for executing tasks in parallel 
when required.  These shell workers are simply instances of our 
shell with the “-s” flag specified to allow commands to be issued 
to them through their stdin.  In our execution model, when a fork, 
join or key-value aggregation is encountered, the run-time spawns 
as many shell workers as possible: each worker assigned to a CPU 
processor, up to the number of available CPU processors in the 
cluster.  The tasks involved in the fork, join or key-value 
aggregation are then streamed through these shell workers to 
enact the required semantics.   

An illustration of the sequence of actions involved in starting shell 
workers across processors in the system is shown in Figure 9.  
The steps are as follows: 

Step 1: A software agent is spawned to execute a command when 
a fork, join or key-value aggregation is encountered in the shell. 

Step 2: The agent forks a number of node IO multiplexer 
processes.  These node IO multiplexer processes are responsible 
for routing messages to/from subsets of nodes used in the parallel 
execution, and are used to avoid exhausting the per-process socket 
descriptor limit. 

Steps 3: The agent then invokes the process startup overlay to 
execute a CPU IO multiplexer process on each node involved in 
the parallel execution.   

Step 4: The CPU IO multiplexer process starts shell workers for 
each processor on the compute node, and is responsible for 
routing messages to/from the shell worker started. 

Step 5: The CPU IO multiplexer makes a callback to the node IO 
multiplexer to establish a network connection between the 
software agent and to each of the shell workers spawned.  

The shell workers have their stdin and stdout duplicated (dup) to 
sockets connected to the network path to the software agent.  This 
is the primary access mechanism in our infrastructure for the 

agents to issue command workloads, and examine output results, 
to/from the shell workers.  In addition to the stdin and stdout, a 
control channel is also created and duplicated to a socket 
connected to the network path to the agent.  The write and read 
ends of the channel are advertised in the environment, and used 
by the emit_tuple and consume_tuple built-in commands 
for sending and receiving key-value pairs respectively. 

 

 

4.1.2 Remote tasks and pipes 
Figure 10 details the steps implemented by our software agent to 
support the pipeline join construct.  The steps for implementing 
the pipeline fork construct are similar.   

In our shell, when a pipeline command “A | B on N procs” 
is executed, the run-time concurrently forks-execs the commands 
“A” and “aspect-agent B”, setting up a pipe between the 
output of “A” and the input of “aspect-agent B”.  The 
following steps then occur: 

Figure 9.  Software agent starting shell workers on compute nodes {0, 1, 4, 5} using the process startup overlay 

Figure 10.  Implementation of pipeline fork 



Step 1: The software agent reads the output from “A” and stores 
this in a temporary file, stdin_file. This approximates the 
unbounded FIFO semantics in KPNs. 

Step 2: The agent then composes a command file that sources the 
environment context file, executes the command string “cat 
stdin_file | B”, and removes itself on completion (i.e. “rm 
–f $0”).  As an optimization, for the case where N is greater 
then the number of available processors in the cluster (M), this 
command string is also wrapped in a loop with N/M iterations.  
When this optimization is performed, a restart file is also created 
for logging the last iteration executed to facilitate the replay of the 
command file on node failure. 

Step 3: Once the command file is composed, a command 
dispatcher thread pushes execution requests for this command file 
into FIFO queues associated with a set of command flusher 
threads.  In the agent, a command flusher thread is created for 
each node IO multiplexer in the current execution, whose sole 
purpose is to detect enqueued command requests and to send 
them, in a round-robin order, to the shell workers.  After all 
command files are enqueued, the command dispatcher issues a 
final “exit” command to all the shell workers. 

Steps 4/5:  Commands are streamed to the shell workers by the 
flusher threads, and the output (stdin, stdout, and control) of the 
workers routed back to an IO multiplexer thread in the software 
agent.  This IO multiplexer thread is responsible for serializing the 
messages it receives and forwarding them to the stdin, stdout and 
control descriptors in the BASH run-time.  The IO multiplexer is 
also responsible for detecting when shell workers exit, and signals 
to the agent when all workers terminate. 

Step 6: Before exiting, a replayer thread in the software agent 
checks if all command files have successfully executed, and hence 
removed.  If command files exist, local shell workers are spawned, 
one for each CPU processor available on the node, and the 
orphaned command files re-dispatched to these local shell 
workers.  The software agent terminates after all the orphaned 
command files complete successfully. 

 

Figure 11. Implementation of key-value aggregation 

4.1.3 Key-value aggregation and distributed hash-
tables 
Figure 11 shows the steps taken by our agent in implementing 
key-value aggregation.  When the pipeline command “A | B on 
keys” is executed, the run-time concurrently forks-execs the 
commands “A” and “aspect-agent B”, setting up a pipe 
between the output of “A”, and the input of “aspect-agent 
B”.  In addition, a pipe is also created for a control channel, with 
the read-write ends advertised in environment variables for use by 
the built-in commands emit_tuple and consume_tuple. The 
following steps then occur: 

Step 1: Command “A” advertises key-value pairs through the 
control channel with the emit_tuple command, and the 
software agent reads the advertised key-value pairs in a key 
dispatcher thread.   

Step 2: The key dispatcher forwards the key-value pair to a 
compute node determined by hash(key)%M, where hash is a hash 
function that generates a 32-bit integer for a given key string, and 
M is the number of compute nodes in the system.  The key-value 
pair is then stored in an associative array data structure on the 
designated compute node.  This associative array is implemented 
as a hash table in memory, and offloaded to a GDBM file-based 
hash table if the table size exceeds an environment configurable 
threshold. 

Step 3: When all key-value pairs have been dispatched, the key 
dispatcher sends a special EOF header to the compute nodes 
participating in the distributed hash table. Each compute node 
then generates a binary file, tuple_file, for each key in its 
associative array with its aggregated values, and composes a 
command file for execution by workers spawned on each 
processor on the local node.  This command file is constructed to 
source its environment context file, execute the command string 
“emit_tuple –f tuple_file | B”, and remove itself on 
completion (i.e. “rm –f $0”).  The –f option flag used with 
emit_tuple simply tells the command to emit the key-value 
data stored in the specified file.  As an optimization, for the case 
where the number of key aggregated (N) on the local node is 
greater then the number of available processors on the node (M), 
this command string is also wrapped in a loop with N/M 
iterations.  When this optimization is performed, a restart file is 
also created for logging the last iteration executed to facilitate the 
replay of the command file on node failure. 

Step 4: Finally, the output (stdin, stdout, and control) of the 
executed commands are routed back to an IO multiplexer thread 
in the software agent.  This IO multiplexer thread is responsible 
for serializing the messages it receives and forwarding them back 
to the stdin, stdout and control descriptors in the BASH run-time. 

4.2 Pipeline Cycle Implementation 
The implementation of the pipeline cycles construct in BASH is 
straightforward, involving less than 100 lines of code change.   In 
our implementation, the parser was updated to recognize the 
pipeline cycle syntax and to set a flag in the shell’s command 
pipeline data structure.  The run-time then checks for this flag 
when executing a pipeline command, wrapping a loop around the 
command if the flag is detected.  The loop is responsible for 
copying the output of the last command into a file, and piping the 
content of that file back to the first command on subsequent 



iterations.   This is achieved by creating two additional virtual 
pipes, and spawning reader and writer threads responsible for 
reading the output at the end of the pipeline into a file, and 
writing the content of the file back to the beginning of the pipeline 
respectively. 

4.3 Process Startup Overlay 
When a user starts our shell as a login environment, or runs a 
script with our shell, the shell run-time boot-straps a process 
startup overlay across each of the compute nodes available to the 
user.  To integrate with cluster resource managers, the list of 
available nodes to the shell run-time can be set in a batch job 
script to the nodes allocated by a resource manager for the 
particular job run.  Our startup overlay then serves two purposes:  
it enables fast startup of shell workers (and the 
functions/commands they execute), and it endeavors to maintain 
continuous operation of the script in the presence of compute 
node failures.   

At a high-level, our startup overlay provides a two-level routing 
hierarchy for forwarding commands between nodes in our 
network.  It is organized as a set of fully connected sectors; with 
each sector containing a set of fully-connected proxies each 
representing a physical compute node. The connections between 
sectors are routed through a single proxy in each sector, called the 
sector head.  

To establish this routing hierarchy, each compute node is assigned 
a monotonic increasing 32-bit node ID, of which the first X bits 
designate its proxy ID (2-bits are used in Figure 9 for illustration 
and 8-bits are used in the actual implementation), and the 
remaining bits designate its sector ID.  In our overlay, starting a 
command within the same sector incurs one routing step.  While 
starting a command between sectors incurs at most three routing 
steps: the command is forwarded through the local sector head to 
its peer sector head, before finally arriving at the intended 
destination proxy. 

Our startup overlay informs the software agents in our framework 
of available nodes in a master_node file, maintained by an 
elected primary sector head and exported in an environment 
variable.  Fault-tolerance is provided by the startup overlay 
because the sector heads continually monitors the health of the 
proxy connections within their own sector and the connection 
between sectors.  If a sector head detects a node failure, it updates 
the primary sector head with this information.  The primary sector 
head is then responsible for updating the master_node file to 
exclude the faulty nodes.  Subsequent invocations of our software 
agent will then use this updated master_node file, containing 
only nodes with which the overlay has routable connections. 

5. Experimental Evaluation 
We examine the performance of our system in a number of ways.  
First, we use micro benchmarks to examine 1) the effectiveness of 
our process startup overlay, and 2) the performance of executing 
millions of task and key-value aggregations.  Second, we look at 
the performance of the system in implementing a solution for the 
TeraSort benchmark [29].   

In this section, all benchmarks were run on a production scientific 
compute cluster managed by the University of Texas at Austin.  
The cluster consists of 4000 compute nodes, each composed of 

four AMD 64-bit Barcelona Quad-Core processors (16-processor 
cores), with 32 GB of memory, and 300 MB of disk storage each.    
All compute nodes are interconnected by a high-speed InfiniBand 
switch, and a Lustre parallel file system is available for global file 
sharing. 

The cluster is a multi-user system, shared by a large community of 
computational science researchers.  Therefore access to the cluster 
is space and time shared through a batch queuing system provided 
through the SGE cluster resource manager. 

 
Figure 12.  Startup performance of a simple command with 

the overlay and the default SSH mechanism  

5.1 Command Startup Performance 
The default remote command startup mechanism on the cluster is 
the SSH command.  We therefore compare the performance of 
executing a simple command in parallel on processors in the 
cluster using the default mechanism and our startup overlay.  
Figure 12 shows the times to complete the execution of the 
hostname commands on 32 to 4096 processors with the two 
mechanisms.  For the startup overlay case, we ran the command 
“hostname on all procs” in a shell script we submitted as 
a batch job to the cluster.  For the experiment we record up to six 
runs for each benchmark, as the variance in the command startup 
performance using SSH was observed to be large.   A linear 
interpolated fit of the data was then used to observe the trend in 
the startup performance of both mechanisms. 

Our results show that the performance of executing commands in 
parallel in our overlay is much better than using SSH.  This is 
especially evident for large processor runs.  At 4096 processors, 
we see that the command execution performance is approximately 
270% worse using SSH than when our overlay is used.   

The SSH command is commonly used as the default remote 
execution mechanism for many commodity clusters.  For example 
all the parallel clusters at the NSF supercomputing centers use 
SSH for this purpose.  However, our process startup overlay uses 
the SSH mechanism only to boot-strap across the participating 
compute nodes at the beginning of job execution.  After the 
overlay is established, all remote commands in our system incur 
the benefit of the exhibited low overhead. 

5.2 Task Execution Performance 
In this experiment, we observe the performance of a pipeline join 
(A on n procs | B), involving 108 tasks, and key-value 
aggregation (A | B on keys), involving 108 unique key-value 



pairs.  In this syntactic benchmark, we assume that task A in the 
pipeline join, and task B in the key-value aggregation consume 
0.1 seconds of work, emulated by the command “sleep 0.1s”. 

Figure 13 shows the execution times of the respective experiments 
for runs involving 512 to 4096 processors on the compute cluster.  
We observe that the performance is approximately similar, and 
improves as the processor set size increases. 

(a) 

(b) 

Figure 13. Performance of (a) pipeline join and (b) key-value 
aggregation for 100 million tasks  

We also observed the key distribution of our ephemeral DHT in 
the above key-value aggregation experiment.  Figure 14 shows the 
distribution of reduce tasks across the 256 compute nodes (for the 
4096 processor experiment) associated with the 100 million 
generated keys.  We calculate the mean (X) and standard 
deviation (σ) for the key distribution to be 390625 and 664 
respectively, indicating a good uniform distribution (low 
variance) across the compute nodes in the DHT of our system.  
The results are unsurprising but important in verifying our 
implementation. 

 
Figure 14.  Distribution of reduce tasks over compute nodes 

5.3 TeraSort Benchmark 
We also examine a solution for the TeraSort benchmark [29] 
using our shell.  The task is to sort 100-byte data records 
generated from an unmodified gensort executable.   

Our solution script consists of three phases.  First, we spawn the 
data generator program in parallel on each processor socket (four 
instances on each compute node).  A LD_PRELOAD shared object 
then transparently partitions the data generated from each 
gensort instance by intercepting calls to fwrite(), and 
permitting writes to local disk if the first two bytes (16-bits) of the 
record falls within the range  
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T 12,2 1616  

where T is the task identifier and N is the total tasks involved in 
the computation.    

Second, we spawn a task on each processor socket to perform the 
actual sort on each of these range partitioned files on local disk. 
Third, we spawn a task on each compute node to copy the sorted 
data from the local disk into the global file system.  Thus, our 
solution represents a version of parallel bucket sort1

 

.   

Figure 15.  Sorting rate and speedup shown with increasing 
number of processors.  Data size = 6e1010

Figure 15
 bytes 

 shows the sorting rate, and the speedup, achieved for 
increasing processor set sizes involved in the computation.  For 
each processor set size, N, we sort a total of N*6e107

5.4 Other Applications 

 bytes.  The 
solution with our shell shows close to linear speedup for 
increasing processor set sizes.  Importantly, our shell enabled us 
to derive a parallel solution for this problem on a production 
scientific cluster within a few hours of scripting and testing effort. 

We have also implemented a number of additional applications 
using our shell on the compute clusters managed by the Texas 
Advanced Computing Center.  These applications include word-
count, parallel grep, matrix-multiply and K-means clustering.  
More information about these applications, including their source 
code, can be found on the project web site [31]. 

                                                                 
1 The source code for our implementation can be found on the 

project web site[31]. 



6. RELATED WORK 
The important significance of coordination languages have been 
extensively described in the literature [9][10].  A coordination 
language project that closely relates to our work is Ptolemy 
[7][8][11].  The project is developing a suite of languages, called 
domains, for the design and simulation of concurrent, real-time, 
embedded systems.  In particular, the PN (Process Network) 
domain most closely resembles our work as it can also be used to 
implement KPN graphs.  However, the project differs from our 
work in their focus on real-time embedded systems, while we 
focus on large scale distributed computation.  Also, their 
programming environment is primarily the graphical program 
editor, Vergil, while we use commodity operating system shells as 
the program composition framework.   

The pipe concept has also been widely adopted by many other 
projects.  Karges et. al. [34] described an early design of a parallel 
pipe implementation, but their work only touches on the fork 
semantics introduced in this paper.  CMS pipelines [12], in 
VM/ESA and z/VM, allow the creation of multiple input and 
output channels in a pipeline command. A Python version of 
CMS pipelines is also available [13], providing this feature to 
other operating systems. However, CMS pipelines are different 
from our proposal because they do not support cycles, parallel 
processing, or higher level concurrency patterns like MapReduce.   

Object pipes have recently been introduced [14], most notably in 
Windows PowerShell [15].  Our implementation in BASH does 
not yet support object streams.  However, our proposed 
extensions do not preclude their introduction into shells that 
support this concept in the future. 

Web products like Yahoo!Pipes [16] have also been introduced 
recently.  The product allows web content to be filtered and 
modified by connecting RSS feeds through pipe-like networks.  
However the concept does not support parallel computation.   

Systems for coordinating MapReduce programs are also closely 
related to our work.  Phoenix [19] provides a low level C/C++ 
API library for implementing MapReduce on shared memory 
architectures.  In addition, open source projects like Apache 
Hadoop [22] allow MapReduce to be implemented through a Java 
API.  Our approach implements MapReduce at the coordination 
language layer, allowing arbitrary programs, including legacy 
programs, to leverage MapReduce concurrency patterns, on 
shared-memory and distributed memory architectures.  Most 
importantly, compared to these other systems, we provide a more 
general computational model in KPN for implementing a wider 
range of algorithms. 

Dryad [26], and its associated programming interfaces [25][28], is 
a general purpose distributed execution engine for direct acyclic 
(DAG) data-flow computation, and hence is very closely related to 
our system.  However, our work differs with Dryad in three 
important respects.   First, Dryad only supports acyclic graphs, 
while our system supports graphs with cycles.  Second, Dyrad 
does not integrate with commonly used cluster job managers like 
OpenPBS, SGE, etc. (Dryad is intended to be the cluster job 
manager itself), while our system is designed for use on clusters 
using commodity job managers.  Third, Dyrad has not yet been 
integrated with commodity operating system shells like BASH, 
which our work specifically addresses.   

Other proposed systems that also use the concept of pipes for 
parallel computation include pipelets [27], but they use the XML 
Pipeline Definition Language (XPDL) for describing the 
relationship between components in a pipeline. 

Finally, our work is also related to functional and declarative 
languages for parallel processing like Sawzall [23], Pig Latin [24] 
SCOPE [28], and Orc [33].  Our work differs from these because 
we do not propose a new language interface but instead extend an 
existing commodity shell scripting interface for parallel 
processing with pipes. 

7. CONCLUSIONS AND FUTURE WORK 
We have proposed semantic extensions to the concept of shell 
pipes, verified the utility of our proposal by implementing a 
prototype in BASH, and composed large applications using the 
system on a production distributed-memory compute cluster.  In 
the process, we are learning some interesting lessons. 

First, we were made very aware that debugging tools are critically 
needed for shells in a parallel computing environment.  There are 
currently few tools which can be used to investigate anomalous 
behaviors in our pipelines.  When things go wrong, as they 
sometimes do, we had to examine the output of each individual 
stage manually to debug the problem.  Therefore we wish to 
investigate debugging tools in the future, possibly extending the 
built-in BASH debugger (bashdb) for our purpose.     

Second, we were reminded that the actual performance of a 
parallel shell script is determined by many additional run-time 
factors, such as process startup overheads, file system bottlenecks, 
L1/L2 memory caching effects, etc.  We are interested in 
investigating simulators that can be run on a workstation to help 
us predict the performance of our parallelization choices.  This 
will greatly aid users in composing first-time right scripts, 
preventing unforeseen performance surprises when the scripts are 
actually run on production parallel computers. 

Third, we are still unclear how to proceed with the integration of 
our pipeline extensions with named pipes (mkfifo).  Future 
releases of our BASH shell may incorporate this support, but as 
yet, it remains an open question. 
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